Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(22): 7598-7604, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37216408

RESUMO

In this study, we developed a substrate-independent initiator film that can undergo surface-initiated polymerization to form an antifouling brush. Inspired by the melanogenesis found in nature, we synthesized a tyrosine-conjugated bromide initiator (Tyr-Br) that contains phenolic amine groups as the dormant coating precursor and α-bromoisobutyryl groups as the initiator. The resultant Tyr-Br was stable under ambient air conditions and underwent melanin-like oxidation only in the presence of tyrosinase to form an initiator film on various substrates. Subsequently, an antifouling polymer brush was formed using air-tolerant activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) of zwitterionic carboxybetaine. The entire surface coating procedure, including the initiator layer formation and ARGET ATRP, occurred under aqueous conditions and did not require organic solvents or chemical oxidants. Therefore, antifouling polymer brushes can be feasibly formed not only on experimentally preferred substrates (e.g., Au, SiO2, and TiO2) but also on polymeric substrates such as poly(ethylene terephthalate) (PET), cyclic olefin copolymer (COC), and nylon.

2.
Biomacromolecules ; 23(10): 4349-4356, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049071

RESUMO

Inspired by the melanogenesis occurring in nature, we report tyrosinase-mediated antifouling surface coating by synthesizing a tyrosine-conjugated sulfobetaine derivative (Tyr-SB). Synthetic Tyr-SB contains zwitterionic sulfobetaine and tyrosine, whose phenolic amine group acts as a dormant coating precursor. In contrast to catecholamine derivatives, tyrosine derivatives are stable against auto-oxidation and are enzymatically oxidized only in the presence of tyrosinase to initiate melanin-like oxidation. When the surface of interest was applied during the course of Tyr-SB oxidation, a superhydrophilic poly(Tyr-SB) film was coated on the surfaces, thereby showing antifouling performance against proteins or adherent cells. Because the oxidation of Tyr-SB occurred under mild aqueous conditions (pH 6-7) without the use of any chemical oxidants, such as sodium periodate or ammonium persulfate, we anticipate that the coating method described herein will serve as a biocompatible tool in the field of biosensors, cell surface engineering, and medical devices, whose interfaces differ in chemistry.


Assuntos
Incrustação Biológica , Monofenol Mono-Oxigenase , Betaína/análogos & derivados , Incrustação Biológica/prevenção & controle , Catecolaminas , Melaninas , Oxidantes , Tirosina
3.
Macromol Rapid Commun ; 43(10): e2200089, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35332614

RESUMO

A tyrosine-based azido derivative (TBAD) that permits both substrate-independent surface coating and clickable film functionalization by mimicking natural melanogenesis is synthesized here. In contrast to catechol derivatives, which are generally susceptible to oxidation by air under ambient conditions, the monophenol-based TBAD remains stable under alkaline and neutral conditions and is activated to oxidized quinone in situ by tyrosinase to initiate melanin-like polymerization. The resulting poly(TBAD) film can be formed on various substrates including noble metals, metal oxides, and synthetic polymers, which can undergo click reaction with terminal alkyne moieties on the entire surface or a specific region through Cu(I)-catalyzed azide-alkyne cycloaddition. The enzyme-mediated coating can rapidly form thin films (≈10 nm) and produce a uniform film morphology, which are important aspects in surface chemistry. This on-demand, clickable coating may become a significant tool for bioconjugation, soft lithography, and labeling techniques.


Assuntos
Química Click , Monofenol Mono-Oxigenase , Alcinos , Azidas , Tirosina
4.
Nanoscale ; 13(22): 10061-10066, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34042916

RESUMO

Graphene oxide (GO) based membranes are promising for advanced nanofiltration in water treatments but there is a need to improve water flux and membrane stability. Although the interlayer distance of GO membranes can be expanded using intercalants to improve permeability, achieving uniform intercalation without the added complication of water-induced swelling is challenging. Herein, we report the fabrication of GO hybrid lamellar membranes with controllable layer structures to achieve high performance in nanofiltration. The interlayer spacing of the GO hybrid membrane is regulated using TiO2 intercalants of different sizes, while the stability of GO membranes is enhanced by encapsulating with polyethyleneimine (PEI). The optimal composite membrane delivers a pure water-flux up to 26.0 L m-2 h-1 bar-1 with a 99.9% rejection of methylene blue and eosin under an ultra-low pressure nanofiltration condition. More importantly, the composite membrane sustains good cycling stability after 5 filtration cycles of dye, which enables the potential industrial application in realizing ultra-stable GO based membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...