Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22278967

RESUMO

Serum antibodies IgM and IgG are elevated during COVID-19 to defend against viral attack. Atypical results such as negative and abnormally high antibody expression were frequently observed whereas the underlying molecular mechanisms are elusive. In our cohort of 144 COVID-19 patients, 3.5% were both IgM and IgG negative whereas 29.2% remained only IgM negative. The remaining patients exhibited positive IgM and IgG expression, with 9.3% of them exhibiting over 20-fold higher titers of IgM than the others at their plateau. IgG titers in all of them were significantly boosted after vaccination in the second year. To investigate the underlying molecular mechanisms, we classed the patients into four groups with diverse serological patterns and analyzed their two-year clinical indicators. Additionally, we collected 111 serum samples for TMTpro-based longitudinal proteomic profiling and characterized 1494 proteins in total. We found that the continuously negative IgM and IgG expression during COVID-19 were associated with mild inflammatory reactions and high T cell responses. Low levels of serum IgD, inferior complement 1 activation of complement cascades, and insufficient cellular immune responses might collectively lead to compensatory serological responses, causing overexpression of IgM. Serum CD163 was positively correlated with antibody titers during seroconversion. This study suggests that patients with negative serology still developed cellular immunity for viral defense, and that high titers of IgM might not be favorable to COVID-19 recovery.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21249333

RESUMO

Serum lactate dehydrogenase (LDH) has been established as a prognostic indicator given its differential expression in COVID-19 patients. However, the molecular mechanisms underneath remain poorly understood. In this study, 144 COVID-19 patients were enrolled to monitor the clinical and laboratory parameters over three weeks. Serum lactate dehydrogenase (LDH) was shown elevated in the COVID-19 patients on admission and declined throughout disease course, and its ability to classify patient severity outperformed other biochemical indicators. A threshold of 247 U/L serum LDH on admission was determined for severity prognosis. Next, we classified a subset of 14 patients into high- and low-risk groups based on serum LDH expression and compared their quantitative serum proteomic and metabolomic differences. The results found COVID-19 patients with high serum LDH exhibited differentially expressed blood coagulation and immune responses including acute inflammatory responses, platelet degranulation, complement cascade, as well as multiple different metabolic responses including lipid metabolism, protein ubiquitination and pyruvate fermentation. Specifically, activation of hypoxia responses was highlighted in patients with high LDH expressions. Taken together, our data showed that serum LDH levels are associated COVID-19 severity, and that elevated serum LDH might be consequences of hypoxia and tissue injuries induced by inflammation.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20163022

RESUMO

Severity prediction of COVID-19 remains one of the major clinical challenges for the ongoing pandemic. Here, we have recruited a 144 COVID-19 patient cohort consisting of training, validation, and internal test sets, longitudinally recorded 124 routine clinical and laboratory parameters, and built a machine learning model to predict the disease progression based on measurements from the first 12 days since the disease onset when no patient became severe. A panel of 11 routine clinical factors, including oxygenation index, basophil counts, aspartate aminotransferase, gender, magnesium, gamma glutamyl transpeptidase, platelet counts, activated partial thromboplastin time, oxygen saturation, body temperature and days after symptom onset, constructed a classifier for COVID-19 severity prediction, achieving accuracy of over 94%. Validation of the model in an independent cohort containing 25 patients achieved accuracy of 80%. The overall sensitivity, specificity, PPV and NPV were 0.70, 0.99, 0.93 and 0.93, respectively. Our model captured predictive dynamics of LDH and CK while their levels were in the normal range. This study presents a practical model for timely severity prediction and surveillance for COVID-19, which is freely available at webserver https://guomics.shinyapps.io/covidAI/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...