Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 26(5): 2519-2532, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28237928

RESUMO

We propose a simple yet effective structural patch decomposition approach for multi-exposure image fusion (MEF) that is robust to ghosting effect. We decompose an image patch into three conceptually independent components: signal strength, signal structure, and mean intensity. Upon fusing these three components separately, we reconstruct a desired patch and place it back into the fused image. This novel patch decomposition approach benefits MEF in many aspects. First, as opposed to most pixel-wise MEF methods, the proposed algorithm does not require post-processing steps to improve visual quality or to reduce spatial artifacts. Second, it handles RGB color channels jointly, and thus produces fused images with more vivid color appearance. Third and most importantly, the direction of the signal structure component in the patch vector space provides ideal information for ghost removal. It allows us to reliably and efficiently reject inconsistent object motions with respect to a chosen reference image without performing computationally expensive motion estimation. We compare the proposed algorithm with 12 MEF methods on 21 static scenes and 12 deghosting schemes on 19 dynamic scenes (with camera and object motion). Extensive experimental results demonstrate that the proposed algorithm not only outperforms previous MEF algorithms on static scenes but also consistently produces high quality fused images with little ghosting artifacts for dynamic scenes. Moreover, it maintains a lower computational cost compared with the state-of-the-art deghosting schemes.

2.
IEEE Trans Image Process ; 26(2): 1004-1016, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27893392

RESUMO

The great content diversity of real-world digital images poses a grand challenge to image quality assessment (IQA) models, which are traditionally designed and validated on a handful of commonly used IQA databases with very limited content variation. To test the generalization capability and to facilitate the wide usage of IQA techniques in real-world applications, we establish a large-scale database named the Waterloo Exploration Database, which in its current state contains 4744 pristine natural images and 94 880 distorted images created from them. Instead of collecting the mean opinion score for each image via subjective testing, which is extremely difficult if not impossible, we present three alternative test criteria to evaluate the performance of IQA models, namely, the pristine/distorted image discriminability test, the listwise ranking consistency test, and the pairwise preference consistency test (P-test). We compare 20 well-known IQA models using the proposed criteria, which not only provide a stronger test in a more challenging testing environment for existing models, but also demonstrate the additional benefits of using the proposed database. For example, in the P-test, even for the best performing no-reference IQA model, more than 6 million failure cases against the model are "discovered" automatically out of over 1 billion test pairs. Furthermore, we discuss how the new database may be exploited using innovative approaches in the future, to reveal the weaknesses of existing IQA models, to provide insights on how to improve the models, and to shed light on how the next-generation IQA models may be developed. The database and codes are made publicly available at: https://ece.uwaterloo.ca/~k29ma/exploration/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...