Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inflamm (Lond) ; 20(1): 9, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918850

RESUMO

BACKGROUND: Catecholamines are major neurotransmitters of the sympathetic nervous system (SNS) and they are of pivotal importance in regulating numerous physiological and pathological processes. Rheumatoid arthritis (RA) is influenced by the activity of the SNS and its neurotransmitters norepinephrine (NE) and dopamine (DA) and early sympathectomy alleviates experimental arthritis in mice. In contrast, late sympathectomy aggravates RA, since this procedure eliminates anti-inflammatory, tyrosine hydroxylase (TH) positive cells that appear in the course of RA. While it has been shown that B cells can take up, degrade and synthesize catecholamines it is still unclear whether this also applies to synovial fibroblasts, a mesenchymal cell that is actively engaged in propagating inflammation and cartilage destruction in RA. Therefore, this study aims to present a detailed description of the catecholamine pathway and its influence on human RA synovial fibroblasts (RASFs). RESULTS: RASFs express all catecholamine-related targets including the synthesizing enzymes TH, DOPA decarboxylase, dopamine beta-hydroxylase, and phenylethanolamine N-methyltransferase. Furthermore, vesicular monoamine transporters 1/2 (VMAT1/2), dopamine transporter (DAT) and norepinephrine transporter (NET) were detected. RASFs are also able to degrade catecholamines as they express monoaminoxidase A and B (MAO-A/MAO-B) and catechol-O-methyltransferase (COMT). TNF upregulated VMAT2, MAO-B and NET levels in RASFs. DA, NE and epinephrine (EPI) were produced by RASFs and extracellular levels were augmented by either MAO, COMT, VMAT or DAT/NET inhibition but also by tumor necrosis factor (TNF) stimulation. While exogenous DA decreased interleukin-6 (IL-6) production and cell viability at the highest concentration (100 µM), NE above 1 µM increased IL-6 levels with a concomitant decrease in cell viability. MAO-A and MAO-B inhibition had differential effects on unstimulated and TNF treated RASFs. The MAO-A inhibitor clorgyline fostered IL-6 production in unstimulated but not TNF stimulated RASFs (10 nM-1 µM) while reducing IL-6 at 100 µM with a dose-dependent decrease in cell viability in both groups. The MAO-B inhibitor lazabemide hydrochloride did only modestly decrease cell viability at 100 µM while enhancing IL-6 production in unstimulated RASFs and decreasing IL-6 in TNF stimulated cells. CONCLUSIONS: RASFs possess a complete and functional catecholamine machinery whose function is altered under inflammatory conditions. Results from this study shed further light on the involvement of sympathetic neurotransmitters in RA pathology and might open therapeutic avenues to counteract inflammation with the MAO enzymes being key candidates.

2.
Biomedicines ; 10(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36009497

RESUMO

The sympathetic nervous system (SNS) has either a pro-inflammatory or anti-inflammatory effect, depending on the stage of arthritis. In the past, treatment of arthritic B cells with a ß2-adrenergic receptor (ß2-ADR) agonist has been shown to attenuate arthritis. In this study, the expression and signaling of ß2-ADR in B cells during collagen-induced arthritis (CIA) were investigated to provide an explanation of why only B cells from arthritic mice are able to improve CIA. Splenic B cells were isolated via magnetic-activated cell sorting (MACS). Adrenergic receptors on B cells and intracellular ß2-ADR downstream molecules (G protein-coupled receptor kinase 2 (GRK-2), ß-Arrestin 2, p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB)) were analyzed at different time points in naïve and arthritic B cells with and without stimulation of ß2-ADR agonist terbutaline by flow cytometry. ß2-ADR-expressing B cells increase during CIA without a change in receptor density. Moreover, we observed a profound downregulation of GRK-2 shortly after induction of arthritis and an increase in ß-Arrestin 2 only at late stage of arthritis. The second messengers studied (p38, ERK1/2 and CREB) followed a biphasic course, characterized by a reduction at onset and an increase in established arthritis. Stimulation of CIA B cells with the ß-ADR agonist terbutaline increased pp38 MAPK independent of the timepoint, while pERK1/2 and pCREB were enhanced only in the late phase of arthritis. The phosphorylation of p38 MAPK, ERK1/2 and CREB in the late phase of arthritis was associated with increased IL-10 produced by B10 cells. The change of ß2-ADR expression and signaling during sustained inflammation might be an integral part of the switch from pro- to anti-inflammatory action of sympathetic mechanisms in late arthritis.

3.
PLoS Biol ; 20(1): e3001513, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073310

RESUMO

The sympathetic nervous system (SNS) contributes to immune balance by promoting anti-inflammatory B cells. However, whether B cells possess a self-regulating mechanism by which they modulate regulatory B cell (Breg) function is not well understood. In this study, we investigated the ability of B cells to synthesize their own catecholamines upon stimulation with different B cell activators and found that expression of the enzyme tyrosine hydroxylase (TH), required to generate catecholamines, is up-regulated by Toll-like receptor (TLR)9. This TLR9-dependent expression of TH correlated with up-regulation of adrenergic receptors (ADRs), enhanced interleukin (IL)-10 production, and overexpression of the co-inhibitory ligands programmed death ligand 1 (PD-L1) and Fas ligand (FasL). Moreover, concomitant stimulation of ß1-3-ADRs together with a B cell receptor (BCR)/TLR9 stimulus clearly enhances the anti-inflammatory potential of Bregs to suppress CD4 T cells, a crucial population in the pathogenesis of autoimmune diseases, like rheumatoid arthritis (RA). Furthermore, TH up-regulation was also demonstrated in B cells during the course of collagen-induced arthritis (CIA), a mouse model for the investigation of RA. In conclusion, our data show that B cells possess an autonomous mechanism to modulate their regulatory function in an autocrine and/or paracrine manner. These findings help to better understand the function of B cells in the regulation of autoimmune diseases and the interplay of SNS.


Assuntos
Linfócitos B Reguladores/metabolismo , Catecolaminas/farmacologia , Receptor Toll-Like 9/metabolismo , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Antígeno B7-H1/metabolismo , Catecolaminas/metabolismo , Colágeno/administração & dosagem , Modelos Animais de Doenças , Proteína Ligante Fas/metabolismo , Interleucina-10/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Knockout , Tirosina 3-Mono-Oxigenase/metabolismo
4.
EBioMedicine ; 73: 103616, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34666225

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that leads to a breakdown of tolerance to self-antigens resulting in inflammation and organ damage. The anti-inflammatory activity of CD73-derived adenosine is well documented, however, its role in SLE pathogenesis is unknown. METHODS: Human peripheral blood immune cells were obtained from adult SLE patients (SLE) and healthy controls (HC). Expression and activity of purinergic ectoenzymes were assessed by qRT-PCR, flow cytometry and HPLC. Genes encoding purinergic ectoenzymes in SLE patients were analysed with targeted DNA sequencing. FINDINGS: Among circulating immune cells (both in HC and SLE), CD73 was most highly expressed on B cells, which was mirrored by high enzymatic activity only in HC. CD73 protein molecular weight was unchanged in SLE, however, the enzymatic activity of CD73 on SLE B cells was almost fully abolished. Accordingly, AMP accumulated in cultured SLE B cells. A similar discrepancy between protein expression and enzymatic activity was observed for NAD-degrading CD38 on SLE B cells. No differences were found in the rate of extracellular ATP degradation and expression of CD39, CD203a/c, and CD157. DNA sequencing identified no coding variants in CD73 in SLE patients. INTERPRETATION: We describe a new pathomechanism for SLE, by which inactivation of CD73 on B cells produces less anti-inflammatory adenosine, resulting in immune cell activation. CD73 inactivation was not due to genetic variation but may be related to posttranslational modification. FUNDING: The German Research Council, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Hiller Research Foundation, and Cardiovascular Research Institute Duesseldorf.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Trifosfato de Adenosina/metabolismo , Biomarcadores , Vias Biossintéticas , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Suscetibilidade a Doenças , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Imunofenotipagem , Leucócitos/imunologia , Leucócitos/metabolismo , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/terapia , Masculino , Índice de Gravidade de Doença
5.
Cell Physiol Biochem ; 55(3): 256-264, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33984198

RESUMO

BACKGROUND/AIMS: During an immune response, type I interferon (IFN-I) signaling induces a wide range of changes, including those which are required to overcome viral infection and those which suppress cytotoxic T cells to avoid immunopathology. During certain bacterial infections, IFN-I signaling exerts largely detrimental effects. Although the IFN-I family of proteins all share one common receptor, biologic responses to signaling vary depending on IFN-I subtype. Here, we asked if one IFN-I subtype dominates the pro-bacterial effect of IFN-I signaling and found that control of Listeria monocytogenes (L.m.) infection is more strongly suppressed by IFN-ß than IFN-α. METHODS: To study this, we measured bacterial titers in IFNAR-/-, IFN-ß­/­, Stat2-/-, Usp18fl/fl and Usp18fl/fl x CD11c-Cre mice models in addition to IFN-I blocking antibodies. Moreover, we measured interferon stimulated genes in bone marrow derived dendritic cells after treatment with IFN-α4 and IFN-ß. RESULTS: Specifically, we show that genetic deletion of IFN-ß or antibody-mediated IFN-ß neutralization was sufficient to reduce bacterial titers to levels similar to those observed in mice that completely lack IFN-I signaling (IFNAR-/- mice). However, IFN-α blockade failed to significantly reduce L.m. titers, suggesting that IFN-ß is the dominant IFN-I subtype responsible for the pro-bacterial effect of IFN-I. Mechanistically, when focusing on IFN-I signals to dendritic cells, we found that IFN-ß induces ISGs more robustly than IFN-α, including USP18, the protein we previously identified as driving the pro-bacterial effects of IFN-I. Further, we found that this induction was STAT1/STAT2 heterodimer- or STAT2/STAT2 homodimer-dependent, as STAT2-deficient mice were more resistant to L.m. infection. CONCLUSION: In conclusion, IFN-Β is the principal member of the IFN-I family responsible for driving the pro-bacterial effect of IFN-I.


Assuntos
Interferon-alfa/imunologia , Interferon beta/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Animais , Feminino , Interferon-alfa/genética , Interferon beta/genética , Listeriose/genética , Masculino , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/imunologia
6.
PLoS Pathog ; 16(3): e1008340, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226027

RESUMO

Combination immunotherapy (CIT) is currently applied as a treatment for different cancers and is proposed as a cure strategy for chronic viral infections. Whether such therapies are efficient during an acute infection remains elusive. To address this, inhibitory receptors were blocked and regulatory T cells depleted in acutely Friend retrovirus-infected mice. CIT resulted in a dramatic expansion of cytotoxic CD4+ and CD8+ T cells and a subsequent reduction in viral loads. Despite limited viral replication, mice developed fatal immunopathology after CIT. The pathology was most severe in the gastrointestinal tract and was mediated by granzyme B producing CD4+ and CD8+ T cells. A similar post-CIT pathology during acute Influenza virus infection of mice was observed, which could be prevented by vaccination. Melanoma patients who developed immune-related adverse events under immune checkpoint CIT also presented with expanded granzyme-expressing CD4+ and CD8+ T cell populations. Our data suggest that acute infections may induce immunopathology in patients treated with CIT, and that effective measures for infection prevention should be applied.


Assuntos
Anticorpos/administração & dosagem , Melanoma/imunologia , Melanoma/terapia , Infecções por Retroviridae/imunologia , Linfócitos T Reguladores/imunologia , Infecções Tumorais por Vírus/imunologia , Animais , Antígeno B7-H1/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Vírus da Leucemia Murina de Friend/fisiologia , Humanos , Imunoterapia/efeitos adversos , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia
7.
Sci Immunol ; 3(27)2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266866

RESUMO

Type I interferon (IFN-I) signaling paradoxically impairs host immune responses during many primary and secondary bacterial infections. Lack of IFN-I receptor reduces bacterial replication and/or bacterial persistence during infection with several bacteria. However, the mechanisms that mediate the adverse IFN-I effect are incompletely understood. Here, we show that Usp18, an interferon-stimulated gene that negatively regulates IFN-I signaling, is primarily responsible for the deleterious effect of IFN-I signaling during infection of mice with Listeria monocytogenes or Staphylococcus aureus Mechanistically, USP18 promoted bacterial replication by inhibiting antibacterial tumor necrosis factor-α (TNF-α) signaling. Deleting IFNAR1 or USP18 in CD11c-Cre+ cells similarly reduced bacterial titers in multiple organs and enhanced survival. Our results demonstrate that inhibiting USP18 function can promote control of primary and secondary bacterial infection by enhancing the antibacterial effect of TNF-α, which correlates with induction of reactive oxygen species (ROS). These findings suggest that USP18 could be targeted therapeutically in patients to ameliorate disease caused by serious bacterial infections.


Assuntos
Interferon Tipo I/imunologia , Listeriose/imunologia , Infecções Estafilocócicas/imunologia , Ubiquitina Tiolesterase/imunologia , Animais , Feminino , Listeria monocytogenes , Masculino , Camundongos Transgênicos , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais , Staphylococcus aureus , Fator de Necrose Tumoral alfa/imunologia , Ubiquitina Tiolesterase/genética
8.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142134

RESUMO

Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169+ cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169+ cells during viral infections remain unclear. Here, we show that tumor necrosis factor is produced by CD11b+ Ly6C+ Ly6G+ cells following infection with VSV. The absence of TNF or TNF receptor 1 (TNFR1) resulted in reduced numbers of CD169+ cells and in reduced type I interferon (IFN-I) production during VSV infection, with a severe disease outcome. Specifically, TNF triggered RelA translocation into the nuclei of CD169+ cells; this translocation was inhibited when the paracaspase MALT-1 was absent. Consequently, MALT1 deficiency resulted in reduced VSV replication, defective innate immune activation, and development of severe disease. These findings indicate that TNF mediates the maintenance of CD169+ cells and innate and adaptive immune activation during VSV infection.IMPORTANCE Over the last decade, strategically placed CD169+ metallophilic macrophages in the marginal zone of the murine spleen and lymph nodes (LN) have been shown to play a very important role in host defense against viral pathogens. CD169+ macrophages have been shown to activate innate and adaptive immunity via "enforced virus replication," a controlled amplification of virus particles. However, the factors regulating the CD169+ macrophages remain to be studied. In this paper, we show that after vesicular stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF), which signals via TNFR1, and promote enforced virus replication in CD169+ macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance.


Assuntos
Interferon Tipo I/imunologia , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Estomatite Vesicular/imunologia , Imunidade Adaptativa , Animais , Imunidade Inata , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Fator de Transcrição RelA/metabolismo , Vesiculovirus/fisiologia , Replicação Viral
9.
Cell Physiol Biochem ; 41(1): 323-338, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28214859

RESUMO

BACKGROUND: Bile acids (BAs) are steroid molecules that are synthesized in the liver. In addition to their important role as a surfactant in solubilizing lipids and promoting the absorption of lipids in the gastrointestinal tract, they act as inflammagens. The role of BAs and their receptor farnesoid X receptor (FXR) during viral infection has not been studied in detail. METHODS: By using FXR-deficient mice, we investigated the role of bile acid receptor FXR during infection with lymphocytic choriomeningitis virus (LCMV). The importance of FXR in inducing IFN-I and monocytes proliferation were investigated and viral titers and T cell exhaustion were analyzed at different time points. RESULTS: This study shows that controlled levels of BAs activate FXR in hepatocytes and FXR in response upregulates the production of type I interferon. In turn, FXR maintains BAs within a balanced range to inhibit their toxic effects. The absence of FXR results in high levels of BAs, which inhibit the proliferation of monocytes and result in a defect in viral elimination, consequently leading to T cell exhaustion. CONCLUSION: We found that FXR contributes to IFN-I production in hepatocytes and balances BA levels to inhibit their toxic effects on monocytes.


Assuntos
Coriomeningite Linfocítica/patologia , Vírus da Coriomeningite Linfocítica/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Ácidos e Sais Biliares/análise , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/metabolismo , Interferon Tipo I/metabolismo , Isoxazóis/farmacologia , Células de Kupffer/citologia , Células de Kupffer/metabolismo , Células de Kupffer/virologia , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Replicação Viral
10.
Front Immunol ; 8: 113, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239381

RESUMO

Peripheral tolerance is an important mechanism by which the immune system can guarantee a second line of defense against autoreactive T and B cells. One autoimmune disease that is related to a break of peripheral tolerance is diabetes mellitus type 1. Using the RIP-GP mouse model, we analyzed the role of the spleen and lymph nodes (LNs) in priming CD8+ T cells and breaking peripheral tolerance. We found that diabetes developed in splenectomized mice infected with the lymphocytic choriomeningitis virus (LCMV), a finding showing that the spleen was not necessary in generating autoimmunity. By contrast, the absence of LNs prevented the priming of LCMV-specific CD8+ T cells, and diabetes did not develop in these mice. Additionally, we found that dendritic cells are responsible for the distribution of virus in secondary lymphoid organs, when LCMV was administered intravenously. Preventing this distribution with the sphingosine-1-phosphate receptor antagonist FTY720 inhibits the transport of antigen to peripheral LNs and consequently prevented the onset of diabetes. However, in case of subcutaneous infection, administration of FTY720 could not inhibit the onset of diabetes because the viral antigen is already presented in the peripheral LNs. These findings demonstrate the importance of preventing the presence of antigen in LNs for maintaining tolerance.

11.
Cell Death Dis ; 7(11): e2444, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809302

RESUMO

Since the discovery of the ubiquitin system and the description of its important role in the degradation of proteins, many studies have shown the importance of ubiquitin-specific peptidases (USPs). One special member of this family is the USP18 protein (formerly UBP43). In the past two decades, several functions of USP18 have been discovered: this protein is not only an isopeptidase but also a potent inhibitor of interferon signaling. Therefore, USP18 functions as 'a' maestro of many biological pathways in various cell types. This review outlines multiple functions of USP18 in the regulation of various immunological processes, including pathogen control, cancer development, and autoimmune diseases.


Assuntos
Endopeptidases/metabolismo , Animais , Antibacterianos/metabolismo , Doenças Autoimunes/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Endopeptidases/química , Humanos , Modelos Biológicos , Viroses/metabolismo
12.
Cell Death Dis ; 7(11): e2446, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809306

RESUMO

Upon infection with persistence-prone virus, type I interferon (IFN-I) mediates antiviral activity and also upregulates the expression of programmed death ligand 1 (PD-L1), and this upregulation can lead to CD8+ T-cell exhaustion. How these very diverse functions are regulated remains unknown. This study, using the lymphocytic choriomeningitis virus, showed that a subset of CD169+ macrophages in murine spleen and lymph nodes produced high amounts of IFN-I upon infection. Absence of CD169+ macrophages led to insufficient production of IFN-I, lower antiviral activity and persistence of virus. Lack of CD169+ macrophages also limited the IFN-I-dependent expression of PD-L1. Enhanced viral replication in the absence of PD-L1 led to persistence of virus and prevented CD8+ T-cell exhaustion. As a consequence, mice exhibited severe immunopathology and died quickly after infection. Therefore, CD169+ macrophages are important contributors to the IFN-I response and thereby influence antiviral activity, CD8+ T-cell exhaustion and immunopathology.


Assuntos
Antígeno B7-H1/metabolismo , Interferon Tipo I/metabolismo , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Vírus da Coriomeningite Linfocítica/fisiologia , Macrófagos/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Doença Crônica , Apresentação Cruzada/imunologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Linfonodos/metabolismo , Coriomeningite Linfocítica/virologia , Camundongos Endogâmicos C57BL , Baço/metabolismo
13.
Cell Physiol Biochem ; 38(3): 1171-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963287

RESUMO

BACKGROUND/AIMS: Unexpected transmissions of viral pathogens during solid organ transplantation (SOT) can result in severe, life-threatening diseases in transplant recipients. Immune activation contributes to disease onset. However mechanisms balancing the immune response against transmitted viral infection through organ transplantation remain unknown. Methods & RESULTS: Here we found, using lymphocytic choriomeningitis virus (LCMV), that transplantation of LCMV infected hearts led to exhaustion of virus specific CD8+ T cells, viral persistence in organs and survival of graft and recipient. Genetic depletion of Interleukin-10 (IL-10) resulted in strong immune activation, graft dysfunction and death of mice, suggesting that IL-10 was a major regulator of CD8+ T cell exhaustion during SOT. In the presence of memory CD8+ T cells, virus could be controlled. However sufficient antiviral immune response resulted in acute rejection of transplanted heart. CONCLUSION: We found that virus transmitted via SOT could not be controlled by naïve mice recipients due to IL-10 mediated CD8+ T cell exhaustion which thereby prevented immunopathology and graft failure whereas memory mice recipients were able to control the virus and induced graft failure.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Coração/virologia , Interleucina-10/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Modelos Animais de Doenças , Rejeição de Enxerto/virologia , Sobrevivência de Enxerto , Imunização , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL
14.
Cell Physiol Biochem ; 38(4): 1343-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27007114

RESUMO

BACKGROUND: Graft versus host disease (GvHD) occurs in 20% of cases with patients having an MHC I matched bone marrow transplantation (BMT). Mechanisms causing this disease remain to be studied. METHODS: Here we used a CD8+ T cell transgenic mouse line (P14/CD45.1+) and transgenic DEE mice bearing ubiquitously the glycoprotein 33-41 (GP33) antigen derived from the major lymphocytic choriomeningitis virus (LCMV) epitope to study mechanisms of tolerance in anti-host reactive CD8+ T cells after BMT. RESULTS: We found that anti-host reactive CD8+ T cells (P14 T cells) were not negatively selected in the thymus and that they were present in wild type (WT) recipient mice as well as in DEE recipient mice. Anti-host reactive CD8+ T cells ignored the GP33 antigen expressed ubiquitously by host cells but they could be activated ex vivo via LCMV-infection. Lipopolysaccharides (LPS) induced transient cell damage in DEE mice bearing anti-host reactive CD8+ T cells after BMT, suggesting that induction of host inflammatory response could break antigen ignorance. Introducing the GP33 antigen into BM cells led to deletion of anti-host reactive CD8+ T cells. CONCLUSION: We found that after BMT anti-host reactive CD8+ T cells ignored host antigen in recipients and that they were only deleted when host antigen was present in hematopoietic cells. Moreover, LPS-induced immune activation contributed to induction of alloreactivity of anti-host reactive CD8+ T cells after BMT.


Assuntos
Transplante de Medula Óssea , Linfócitos T CD8-Positivos/imunologia , Tolerância Imunológica , Alanina Transaminase/metabolismo , Animais , Anticorpos/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Epitopos/imunologia , Citometria de Fluxo , Glicoproteínas/genética , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , L-Lactato Desidrogenase/metabolismo , Lipopolissacarídeos/toxicidade , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transplante Homólogo , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
15.
Sci Rep ; 6: 19191, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26805453

RESUMO

Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-specific antibodies or virus-specific CD8(+) T cells. We found that after systemic recall infection with LCMV-WE the presence of virus-specific antibodies allowed intracellular replication of virus in the marginal zone of spleen. In contrast, specific antibodies limited viral replication in liver, lung, and kidney. Upon recall infection with the persistent virus strain LCMV-Docile, viral replication in spleen was essential for the priming of CD8(+) T cells and for viral control. In contrast to specific antibodies, memory CD8(+) T cells inhibited viral replication in marginal zone but failed to protect mice from persistent viral infection. We conclude that virus-specific antibodies limit viral infection in peripheral organs but still allow replication of LCMV in the marginal zone, a mechanism that allows immune boosting during recall infection and thereby guarantees control of persistent virus.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Coriomeningite Linfocítica/genética , Viroses/imunologia , Replicação Viral/imunologia , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/virologia , Humanos , Vírus da Coriomeningite Linfocítica/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/virologia , Camundongos , Baço/imunologia , Baço/virologia , Viroses/genética , Replicação Viral/genética
16.
J Autoimmun ; 67: 82-89, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26553386

RESUMO

The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Replicação Viral/imunologia , Animais , Modelos Animais de Doenças , Humanos , Interferon Tipo I/biossíntese , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/virologia , Ativação Linfocitária , Linfócitos/imunologia , Linfócitos/metabolismo , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Linfotoxina-beta/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Baço/imunologia , Baço/metabolismo , Baço/virologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
17.
Eur J Immunol ; 46(2): 372-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26507703

RESUMO

Acute or chronic viral infections can lead to generalized immunosuppression. Several mechanisms, such as immunopathology of CD8(+) T cells, inhibitory receptors, or regulatory T (Treg) cells, contribute to immune dysfunction. Moreover, patients with chronic viral infections usually do not respond to vaccination, a finding that has not been previously explained. Recently, we reported that CD169(+) macrophages enforce viral replication, which is essential for guaranteeing antigen synthesis and efficient adaptive immune responses. In the present study, we used a chronic lymphocytic choriomeningitis virus infection mouse model to determine whether this mechanism is affected by chronic viral infection, which may impair the activation of adaptive immunity. We found that enforced viral replication of a superinfecting virus is completely blunted in chronically infected mice. This absence of enforced viral replication in CD169(+) macrophages is not explained by CD8(+) T-cell-mediated immunopathology but rather by prolonged IFN-I responses. Consequently, the absence of viral replication impairs both antigen production and the adaptive immune response against the superinfecting virus. These findings indicate that chronic infection leads to sustained IFN-I action, which is responsible for the absence of an antiviral immune response against a secondary viral infection.


Assuntos
Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Macrófagos/imunologia , Estomatite Vesicular/imunologia , Vesiculovirus/fisiologia , Imunidade Adaptativa , Animais , Células Cultivadas , Doença Crônica , Terapia de Imunossupressão , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Replicação Viral
18.
Cell Physiol Biochem ; 36(6): 2379-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26279441

RESUMO

BACKGROUND: Type I interferon (IFN-I) predisposes to bacterial superinfections, an important problem during viral infection or treatment with interferon-alpha (IFN-α). IFN-I-induced neutropenia is one reason for the impaired bacterial control; however there is evidence that more frequent bacterial infections during IFN-α-treatment occur independently of neutropenia. METHODS: We analyzed in a mouse model, whether Pseudomonas aeruginosa control is influenced by co-infection with the lymphocytic choriomeningitis virus (LCMV). Bacterial titers, numbers of neutrophils and the gene-expression of liver-lysozyme-2 were determined during a 24 hours systemic infection with P. aeruginosa in wild-type and Ifnar(-/-) mice under the influence of LCMV or poly(I:C). RESULTS: Virus-induced IFN-I impaired the control of Pseudomonas aeruginosa. This was associated with neutropenia and loss of lysozyme-2-expression in the liver, which had captured P. aeruginosa. A lower release of IFN-I by poly(I:C)-injection also impaired the bacterial control in the liver and reduced the expression of liver-lysozyme-2. Low concentration of IFN-I after infection with a virulent strain of P. aeruginosa alone impaired the bacterial control and reduced lysozyme-2-expression in the liver as well. CONCLUSION: We found that during systemic infection with P. aeruginosa Kupffer cells quickly controlled the bacteria in cooperation with neutrophils. Upon LCMV-infection this cooperation was disturbed.


Assuntos
Interferon Tipo I/farmacologia , Vírus da Coriomeningite Linfocítica/fisiologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Animais , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Imunidade Inata/efeitos dos fármacos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Muramidase/metabolismo , Neutropenia/imunologia , Neutropenia/patologia , Poli I-C/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Baço/efeitos dos fármacos , Baço/metabolismo , Virulência/efeitos dos fármacos
19.
J Autoimmun ; 62: 11-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26094774

RESUMO

Autoantibodies are a hallmark of autoimmune diseases, such as rheumatoid arthritis, autoimmune hepatitis, and systemic lupus erythematosus (SLE). High titers of anti-nuclear antibodies are used as surrogate marker for SLE, however their contribution to pathogenesis remains unclear. Using murine model of SLE and human samples, we studied the effect of immune stimulation on relapsing of SLE. Although autoantibodies bound to target cells in vivo, only additional activation of CD8(+) T cells converted this silent autoimmunity into overt disease. In mice as well as in humans CD8(+) T cells derived IFN-γ enhanced expression of Fc-receptors on CD11b(+) cells. High expression of Fc-receptors allowed CD11b(+) cells to bind to antibody covered target cells and to destroy them in vivo. We found that autoantibodies induce clinically relevant disease when adaptive immunity, specific for disease non-related antigen, is activated.


Assuntos
Antígeno CD11b/metabolismo , Interferon gama/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Animais , Autoanticorpos/imunologia , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Knockout , Receptores de IgG/genética , Recidiva
20.
Nat Commun ; 6: 6217, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25692415

RESUMO

B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1(-/-) mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1(-/-) mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/citologia , Antígeno Carcinoembrionário/fisiologia , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Separação Celular , Sobrevivência Celular , Citometria de Fluxo , Regulação da Expressão Gênica , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Transdução de Sinais , Baço/metabolismo , Vesiculovirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...