Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
World Neurosurg ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38789035

RESUMO

BACKGROUND: Experimental animal models of ischemic spinal cord injury (iSCI) are essential for studying its pathogenesis and for developing new therapeutic strategies to improve functional recovery in humans. Many existing models, however, exhibit high variability or early lethality. A reliable experimental iSCI model would significantly advance novel treatment approaches for these severe neurological disorders. To this end, we have established a rat model of persistent iSCI with an extended lifespan. METHODS: We have developed a novel iSCI model that induces localized ischemic lesions in the spinal cord of male Sprague-Dawley rats. This is achieved by cross-clamping the descending aorta just rostral the azygos vein using an atraumatic bulldog clamp. RESULTS: The experimental iSCI model consistently demonstrated symptoms specific to spinal cord ischemia at the lumbar level. The procedure takes approximately 50 min and does not require specialized surgical equipment. It has a survival rate of 84%, a recovery rate of 40%, and a complication rate of 16%. CONCLUSIONS: We have successfully developed a rat model of persistent iSCI. This protocol proves to be highly reliable and holds promise for evaluating new therapeutic strategies aimed at promoting functional recovery in patients suffering from spinal cord ischemia.

2.
Brain Res ; 1825: 148709, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072373

RESUMO

The primary objective of this study was to investigate the potential facilitating effects of daily rehabilitation for chronic cerebral ischemia following the intravenous infusion of mesenchymal stem cells (MSC) in rats. The middle cerebral artery (MCA) was occluded by intraluminal occlusion using a microfilament (MCAO). Eight weeks after MCAO induction, the rats were used as a chronic cerebral ischemia model. Four experimental groups were studied: Vehicle group (medium only, no cells); Rehab group (vehicle + rehabilitation), MSC group (MSC only); and Combined group (MSC + rehabilitation). Rat MSCs were intravenously infused eight weeks after MCAO induction, and the rats received daily rehabilitation through treadmill exercise for 20 min. Behavioral testing, lesion volume assessment using magnetic resonance imaging (MRI), and histological analysis were performed during the observation period until 16 weeks after MCAO induction. All treated animals showed functional improvement compared with the Vehicle group; however, the therapeutic efficacy was greatest in the Combined group. The combination therapy is associated with enhanced neural plasticity shown with histological analysis and MRI diffusion tensor imaging. These findings provide behavioral evidence for enhanced recovery by combined therapy with rehabilitation and intravenous infusion of MSCs, and may form the basis for the development of clinical protocols in the future.


Assuntos
Isquemia Encefálica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Ratos Sprague-Dawley , Imagem de Tensor de Difusão , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infusões Intravenosas , Isquemia Encefálica/tratamento farmacológico , Transplante de Células-Tronco Mesenquimais/métodos , Modelos Animais de Doenças
3.
Brain Sci ; 13(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37891844

RESUMO

Malignant glioma is a highly invasive tumor, and elucidating the glioma invasion mechanism is essential for developing novel therapies. We aimed to highlight actin alpha 2, smooth muscle (ACTA2) as potential biomarkers of brain invasion and distant recurrence in malignant gliomas. Using the human malignant glioma cell line, U251MG, we generated ACTA2 knockdown (KD) cells treated with small interfering RNA, and the cell motility and proliferation of the ACTA2 KD group were analyzed. Furthermore, tumor samples from 12 glioma patients who underwent reoperation at the time of tumor recurrence were utilized to measure ACTA2 expression in the tumors before and after recurrence. Thereafter, we examined how ACTA2 expression correlates with the time to tumor recurrence and the mode of recurrence. The results showed that the ACTA2 KD group demonstrated a decline in the mean motion distance and proliferative capacity compared to the control group. In the clinical glioma samples, ACTA2 expression was remarkably increased in recurrent samples compared to the primary samples from the same patients, and the higher the change in ACTCA2 expression from the start to relapse, the shorter the progression-free survival. In conclusion, ACTA2 may be involved in distant recurrence in clinical gliomas.

4.
Spine Surg Relat Res ; 7(4): 319-326, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37636138

RESUMO

Since the 1990s, our group has been conducting basic research on regenerative medicine using various cell types to treat several central nervous system diseases, including spinal cord injury (SCI). We have reported many positive effects of the intravenous administration of mesenchymal stem cells (MSCs) derived from the bone marrow. In the current study, MSCs were administered intravenously to a rat model of severe SCI (crush injury) during the acute to subacute stages-considerable motor function recovery was observed. Furthermore, MSC transplantation in a chronic-phase SCI model improved motor function. In this review, we discuss recent updates in basic research on the intravenous infusion of MSCs and prospects for SCI research.

5.
Pediatr Res ; 94(6): 1921-1928, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37422495

RESUMO

BACKGROUND: Perinatal brain injury is multifactorial and primarily associated with brain prematurity, inflammation, and hypoxia-ischemia. Although recent advances in perinatal medicine have improved the survival rates of preterm infants, neurodevelopmental disorders remain a significant complication. We tested whether the intravenous infusion of mesenchymal stem cells (MSCs) had therapeutic efficacy against perinatal brain injury in rats. METHODS: Pregnant rats at embryonic day (E) 18 received lipopolysaccharide and the pups were born at E21. On postnatal day (PND) 7, the left common carotid artery of each pup was ligated, and they were exposed to 8% oxygen for 2 h. They were randomized on PND10, and MSCs or vehicle were intravenously infused. We performed behavioral assessments, measured brain volume using MRI, and performed histological analyses on PND49. RESULTS: Infused MSCs showed functional improvements in our model. In vivo MRI revealed that MSC infusion increased non-ischemic brain volume compared to the vehicle group. Histological analyses showed that cortical thickness, the number of NeuN+ and GAD67+ cells, and synaptophysin density in the non-ischemic hemisphere in the MSC group were greater than the vehicle group, but less than the control group. CONCLUSIONS: Infused MSCs improve sensorimotor and cognitive functions in perinatal brain injury and enhance neuronal growth. IMPACT: Intravenous infusion of MSCs improved neurological function in rats with perinatal brain injury, including motor, sensorimotor, cognitive, spatial, and learning memory. Infused MSCs increased residual (non-ischemic) tissue volume, number of neuronal cells, GABAergic cells, and cortical synapses in the contralesional (right) hemisphere. Intravenous administration of MSC might be suitable for the treatment of perinatal brain injury.


Assuntos
Lesões Encefálicas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Humanos , Recém-Nascido , Infusões Intravenosas , Ratos Sprague-Dawley , Recém-Nascido Prematuro , Lesões Encefálicas/terapia , Células-Tronco Mesenquimais/fisiologia , Modelos Animais de Doenças
6.
Brain Res ; 1817: 148484, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37442249

RESUMO

Spinal cord injury (SCI) can cause paralysis with a high disease burden with limited treatment options. A single intravenous infusion of mesenchymal stem cells (MSCs) improves motor function in rat SCI models, possibly through the induction of axonal sprouting and remyelination. Repeated infusions (thrice at weekly intervals) of MSCs were administered to rats with chronic SCI to determine if multiple-dosing regimens enhance motor improvement. Chronic SCI rats were randomized and infused with vehicle (vehicle), single MSC injection at week 6 (MSC-1) or repeatedly injections of MSCs at 6, 7, and 8 weeks (MSC-3) after SCI induction. In addition, a single high dose of MSCs (HD-MSC) equivalent to thrice the single dose was infused at week 6. Locomotor function, light and electron microscopy, immunohistochemistry and ex vivo diffusion tensor imaging were performed. Repeated infusion of MSCs (MSC-3) provided the greatest functional recovery compared to single and single high-dose infusions. The density of remyelinated axons in the injured spinal cord was the greatest in the MSC-3 group, followed by the MSC-1, HD-MSC and vehicle groups. Increased sprouting of the corticospinal tract and serotonergic axon density was the greatest in the MSC-3 group, followed by MSC-1, HD-MSC, and vehicle groups. Repeated infusion of MSCs over three weeks resulted in greater functional improvement than single administration of MSCs, even when the number of infused cells was tripled. MSC-treated rats showed axonal sprouting and remyelination in the chronic phase of SCI.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Ratos , Animais , Infusões Intravenosas , Imagem de Tensor de Difusão , Traumatismos da Medula Espinal/terapia , Medula Espinal/fisiologia , Tratos Piramidais , Recuperação de Função Fisiológica/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos
7.
J Neurosci Methods ; 386: 109784, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608904

RESUMO

BACKGROUND: Magnetic resonance angiography (MRA) is an important tool in rat models of cerebrovascular disease. Although MRA has long been used in rodents, the image quality is typically not as high as that observed in clinical practice. Moreover, studies on MRA image quality in rats are limited. This study aimed to develop a practical high-spatial-resolution MRA protocol for imaging cerebral arteries in rats. NEW METHOD: We used the "half position method" regarding coil placement and modified the imaging parameters and image reconstruction method. We applied this new imaging method to measure maturation-related signal changes on rat MRAs. RESULTS: The new practical high-spatial-resolution MRA imaging protocol obtained a signal intensity up to 3.5 times that obtained using a basic coil system, simply by modifying the coil placement method. This method allowed the detection of a gradual decrease in the signal in cerebral vessels with maturation. COMPARISON WITH EXISTING METHODS: A high-spatial-resolution MRA for rats was obtained with an imaging time of approximately 100 min. Comparable resolution and image quality were obtained using the new protocol with an imaging time of 30 min CONCLUSIONS: The new practical high-spatial-resolution MRA protocol can be implemented simply and successfully to achieve high image quality with an imaging time of approximately 30 min. This protocol will benefit researchers performing MRA imaging in cerebral artery studies in rats.


Assuntos
Transtornos Cerebrovasculares , Angiografia por Ressonância Magnética , Ratos , Animais , Angiografia por Ressonância Magnética/métodos , Artérias Cerebrais/diagnóstico por imagem , Transtornos Cerebrovasculares/diagnóstico , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Angiografia Cerebral/métodos , Meios de Contraste
8.
Sci Rep ; 12(1): 16986, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216855

RESUMO

Intravenous infusion of stem cells is a minimally invasive cellular delivery method, though a few have been reported in a critical limb-threatening ischemia (CLTI) animal model or patients. In the present study, we hypothesized that intravenous infusion of bone-marrow derived mesenchymal stem cells (MSCs) improves tissue perfusion in a rat hindlimb ischemia model. Hindlimb ischemia was generated in Sprague-Dawley rats by femoral artery removal, then seven days after ischemic induction intravenous infusion of 1 × 106 MSCs (cell group) or vehicle (control group) was performed. As compared with the control, tissue perfusion was significantly increased in the cell group. Histological findings showed that capillary density was significantly increased in the cell group, with infused green fluorescent protein (GFP)-MSCs distributed in the ischemic limb. Furthermore, gene expression of vascular endothelial growth factor (VEGF) was significantly increased in ischemic hindlimb muscle tissues of rats treated with MSC infusion. In conclusion, intravenous infusion of bone-marrow derived MSCs improved tissue perfusion in ischemic hindlimbs through angiogenesis, suggesting that intravenous infusion of MSCs was a promising cell delivery method for treatment of CLTI.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças Vasculares Periféricas , Animais , Medula Óssea/metabolismo , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/metabolismo , Membro Posterior/irrigação sanguínea , Infusões Intravenosas , Isquemia/patologia , Extremidade Inferior , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica/fisiologia , Perfusão , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
JMIR Res Protoc ; 11(7): e37898, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35793128

RESUMO

BACKGROUND: Brain injuries resulting from motor vehicle accidents and falls, as well as hypoxic insults and other conditions, are one of the leading causes of disability and death in the world. Current treatments are limited but include continuous rehabilitation, especially for chronic brain injury. Recent studies have demonstrated that the intravenous infusion of mesenchymal stem cells (MSCs) has therapeutic efficacy for several neurological diseases, including stroke and spinal cord injury. OBJECTIVE: The objective of our investigator-initiated clinical trial is to assess the safety and potential efficacy of the intravenous infusion of autoserum-expanded autologous MSCs for patients with chronic brain injury. METHODS: The (phase 2) trial will be a single-arm, open-label trial with the primary objective of confirming the safety and efficacy of autoserum-expanded autologous MSCs (STR-01; produced under good manufacturing practices) when administered to patients with chronic brain injury. The estimated number of enrolled participants is 6 to 20 patients with a modified Rankin Scale grade of 3 to 5. The assessment of safety and the proportion of cases in which the modified Rankin Scale grade improves by 1 point or more at 180 days after the injection of STR-01 will be performed after MSC infusion. RESULTS: We received approval for our clinical trial from the Japanese Pharmaceuticals and Medical Devices Agency on December 12, 2017. The trial will be completed on June 11, 2023. The registration term is 5 years. The recruitment of the patients for this trial started on April 20, 2018, at Sapporo Medical University Hospital in Japan. CONCLUSIONS: Our phase 2 study will aim to address the safety and efficacy of the intravenous infusion of MSCs for patients with chronic brain injury. The use of STR-01 has been performed for patients with cerebral infarction and spinal cord injury, providing encouraging results. The potential therapeutic efficacy of the systemic administration of autoserum-expanded autologous MSCs for chronic brain injury should be evaluated, given its safety and promising results for stroke and spinal cord injury. TRIAL REGISTRATION: Japan Medical Association Center for Clinical Trials JMA-IIA00333; https://tinyurl.com/nzkdfnbc. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/37898.

10.
Nutrients ; 14(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35745176

RESUMO

The purple-flesh potato (Solanum tuberosum L.) cultivar "Shadow Queen" (SQ) naturally contains anthocyanins. This randomized, double-blind, placebo-controlled study determines whether ingesting purple potatoes increases the number of mesenchymal stem cells (MSC) and improves stress response, a minor health complaint in healthy adults (registration number: UMIN000038876). A total of 15 healthy subjects (ages: 50-70 years) with minor health complaints were randomly assigned to one of two groups. For 8 weeks, the placebo group received placebo potatoes cv. "Haruka" and the test group received test potato cv. SQ containing 45 mg anthocyanin. The MSC count and several stress responses were analyzed at weeks 0 and 8 of the intake periods. The ingestion of a SQ potato did not affect the MSC count but markedly improved psychological stress response, irritability, and depression as minor health complaints compared with "Haruka". No adverse effects were noted. Hence, an 8-week intake of SQ could improve stress responses.


Assuntos
Solanum tuberosum , Adulto , Idoso , Antocianinas/farmacologia , Antioxidantes , Método Duplo-Cego , Humanos , Pessoa de Meia-Idade
11.
J Neurotrauma ; 39(23-24): 1665-1677, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35611987

RESUMO

Although limited spontaneous recovery occurs after spinal cord injury (SCI), current knowledge reveals that multiple forms of axon growth in spared axons can lead to circuit reorganization and a detour or relay pathways. This hypothesis has been derived mainly from studies of the corticospinal tract (CST), which is the primary descending motor pathway in mammals. The major CST is the dorsal CST (dCST), being the major projection from cortex to spinal cord. Two other components often called "minor" pathways are the ventral and the dorsal lateral CSTs, which may play an important role in spontaneous recovery. Intravenous infusion of mesenchymal stem cells (MSCs) provides functional improvement after SCI with an enhancement of axonal sprouting of CSTs. Detailed morphological changes of CST pathways, however, have not been fully elucidated. The primary objective was to evaluate detailed changes in descending CST projections in SCI after MSC infusion. The MSCs were infused intravenously one day after SCI. A combination of adeno-associated viral vector (AAV), which is an anterograde and non-transsynaptic axonal tracer, was injected 14 days after SCI induction. The AAV with advanced tissue clearing techniques were used to visualize the distribution pattern and high-resolution features of the individual axons coursing from above to below the lesion. The results demonstrated increased observable axonal connections between the dCST and axons in the lateral funiculus, both rostral and caudal to the lesion core, and an increase in observable axons in the dCST below the lesion. This increased axonal network could contribute to functional recovery by providing greater input to the spinal cord below the lesion.


Assuntos
Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Animais , Tratos Piramidais/fisiologia , Recuperação de Função Fisiológica/fisiologia , Axônios/patologia , Medula Espinal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Regeneração Nervosa/fisiologia , Mamíferos
12.
J Stroke Cerebrovasc Dis ; 31(7): 106520, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35523052

RESUMO

Background Selecting the appropriate direct oral anticoagulants (DOACs) for embolic ischemic stroke patients, especially on concurrent antiplatelet therapy, is important. However, a limited number of studies have reported on the pharmacological differences in platelet aggregation of each DOAC. We aimed to evaluate the antiplatelet effects of selected DOACs, by comparing dabigatran (a direct oral thrombin inhibitor) and factor Xa (FXa) inhibitors (apixaban and rivaroxaban) in patients who had suffered a cardioembolic stroke. Methods We retrospectively evaluated 12 patients diagnosed with a cardioembolic stroke who took any DOAC without an antiplatelet drug and underwent platelet aggregation tests within 60 days from the onset of symptoms. The platelet aggregation tests were analyzed by both light transmission aggregometry and VerifyNow®. Results Six patients (50%) took dabigatran, while the other six (50%) took an FXa inhibitor (n = 4 for apixaban and n = 2 for rivaroxaban). From the light transmission aggregometry analysis, it was found that the maximal extent of aggregation for adenosine diphosphate (ADP) was significantly higher with dabigatran than with FXa inhibitors, and the ED50 value of ADP on platelet aggregation was significantly lower with dabigatran than with FXa inhibitors. Moreover, the VerifyNow® analyses revealed that P2Y12 reaction units were significantly higher with dabigatran than with FXa inhibitors. Conclusions Dabigatran had little impact on platelet aggregation compared to FXa inhibitors in patients who had suffered a cardioembolic stroke with atrial fibrillation, and who took DOACs for secondary prevention within 60 days from the onset.


Assuntos
Fibrilação Atrial , AVC Embólico , Difosfato de Adenosina/farmacologia , Administração Oral , Anticoagulantes/uso terapêutico , Antitrombinas/uso terapêutico , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/tratamento farmacológico , Dabigatrana/uso terapêutico , Inibidores do Fator Xa/efeitos adversos , Humanos , Projetos Piloto , Agregação Plaquetária , Piridonas/efeitos adversos , Estudos Retrospectivos , Rivaroxabana/efeitos adversos
13.
J Neurosurg ; : 1-10, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861644

RESUMO

OBJECTIVE: Stroke is a major cause of long-term disability, and there are few effective treatments that improve function in patients during the chronic phase of stroke. Previous research has shown that single systemic infusion of mesenchymal stem cells (MSCs) improves motor function in acute and chronic cerebral ischemia models in rats. A possible mechanism that could explain such an event includes the enhanced neural connections between cerebral hemispheres that contribute to therapeutic effects. In the present study, repeated infusions (3 times at weekly intervals) of MSCs were administered in a rat model of chronic stroke to determine if multiple dosing facilitated plasticity in neural connections. METHODS: The authors induced middle cerebral artery occlusion (MCAO) in rats and, 8 weeks thereafter, used them as a chronic stroke model. The rats with MCAO were randomized and intravenously infused with vehicle only (vehicle group); with MSCs at week 8 (single administration: MSC-1 group); or with MSCs at weeks 8, 9, and 10 (3 times, repeated administration: MSC-3 group) via femoral veins. Ischemic lesion volume and behavioral performance were examined. Fifteen weeks after induction of MCAO, the thickness of the corpus callosum (CC) was determined using Nissl staining. Immunohistochemical analysis of the CC was performed using anti-neurofilament antibody. Interhemispheric connections through the CC were assessed ex vivo by diffusion tensor imaging. RESULTS: Motor recovery was better in the MSC-3 group than in the MSC-1 group. In each group, there was no change in the ischemic volume before and after infusion. However, both thickness and optical density of neurofilament staining in the CC were greater in the MSC-3 group, followed by the MSC-1 group, and then the vehicle group. The increased thickness and optical density of neurofilament in the CC correlated with motor function at 15 weeks following induction of MCAO. Preserved neural tracts that ran through interhemispheric connections via the CC were also more extensive in the MSC-3 group, followed by the MSC-1 group and then the vehicle group, as observed ex vivo using diffusion tensor imaging. CONCLUSIONS: These results indicate that repeated systemic administration of MSCs over 3 weeks resulted in greater functional improvement as compared to single administration and/or vehicle infusion. In addition, administration of MSCs is associated with promotion of interhemispheric connectivity through the CC in the chronic phase of cerebral infarction.

14.
BMC Urol ; 21(1): 156, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34774029

RESUMO

BACKGROUND: Interstitial cystitis/bladder pain syndrome (IC/BPS) categorized with and without Hunner lesions is a condition that displays chronic pelvic pain related to the bladder with no efficacious treatment options. There are strong associations suggested between Hunner-type IC and autoimmune diseases. Recently, we established an animal model of Hunner-type IC using a Toll-like receptor-7 (TLR7) agonist. Intravenous infusion of mesenchymal stem cells (MSCs) can be used to treat injury via multimodal and orchestrated therapeutic mechanisms including anti-inflammatory effects. Here, we investigated whether infused MSCs elicit therapeutic efficacy associated with the TLR7-related anti-inflammatory pathway in our Hunner-type IC model. METHODS: Voiding behaviors were monitored 24 h prior to the Loxoribine (LX), which is a TLR7 agonist instillation in order to establish a Hunner-type IC model (from - 24 to 0 h) in female Sprague-Dawley rats. LX was instilled transurethrally into the bladder. At 0 h, the initial freezing behavior test confirmed that no freezing behavior was observed in any of the animals. The LX-instilled animals were randomized. Randomized LX-instilled rats were intravenously infused with MSCs or with vehicle through the right external jugular vein. Sampling tissue for green fluorescent protein (GFP)-positive MSCs were carried out at 48 h. Second voiding behavior tests were monitored from 72 to 96 h. After the final evaluation of the freezing behavior test at 96 h after LX instillation (72 h after MSC or vehicle infusion), histological evaluation with H&E staining and quantitative real-time polymerase chain reaction (RT-PCR) to analyze the mRNA expression levels of inflammatory cytokines were performed. RESULTS: Freezing behavior was reduced in the MSC group, and voiding behavior in the MSC group did not deteriorate. Hematoxylin-eosin staining showed that mucosal edema, leukocyte infiltration, and hemorrhage were suppressed in the MSC group. The relative expression of interferon-ß mRNA in the bladder of the MSC group was inhibited. Numerous GFP-positive MSCs were distributed mainly in the submucosal and mucosal layers of the inflammatory bladder wall. CONCLUSION: Intravenous infusion of MSCs may have therapeutic efficacy in a LX-instilled Hunner-type IC rat model via a TLR7-related anti-inflammatory pathway.


Assuntos
Cistite Intersticial/terapia , Interferon beta/metabolismo , Células-Tronco Mesenquimais , Receptor 7 Toll-Like/agonistas , Animais , Comportamento Animal , Cistite Intersticial/induzido quimicamente , Cistite Intersticial/metabolismo , Cistite Intersticial/patologia , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Infusões Intravenosas , Dor Pélvica/etiologia , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/patologia , Micção
16.
Plast Reconstr Surg ; 148(4): 799-807, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34550936

RESUMO

BACKGROUND: Surgical reconstruction options of soft-tissue defects often include random pattern skin flaps. Flap survival depends on flap size and rotation arc and can be challenging regarding flap perfusion, leading to wound healing complications, insufficient wound coverage, and even flap loss. Therefore, novel approaches that promote skin flap survival are required. Bone marrow-derived mesenchymal stem cells intravenous infusion is therapeutically effective in various experimental disease models by means of multimodal and orchestrated mechanisms including anti-inflammatory and immunomodulatory effects, and by means of microvasculature reestablishment. METHODS: A modified McFarlane-type rodent skin flap model was used. After skin flap surgery, intravenous infusion of mesenchymal stem cells or vehicle was performed. In vivo optical near-infrared imaging using indocyanine green was performed, followed by histologic analysis, including hematoxylin and eosin and Masson trichrome staining, and gene expression analysis. RESULTS: The flap survival area was greater in the mesenchymal stem cell group. In vivo optical near-infrared perfusion imaging analysis suggested that skin blood perfusion was greater in the mesenchymal stem cell group. Ex vivo histologic analysis demonstrated that the skin structure was more clearly observed in the mesenchymal stem cell group. The dermal thickness was greater in the mesenchymal stem cell group, according to the Masson trichrome staining results. The authors observed a higher expression of fibroblast growth factor 2 mRNA in the tissues of the mesenchymal stem cell group using quantitative reverse-transcription polymerase chain reaction. CONCLUSION: These results suggest that intravenous infusion of bone marrow-derived mesenchymal stem cells promotes skin survival of random pattern flaps, which is associated with increased blood perfusion and higher expression of fibroblast growth factor 2.


Assuntos
Sobrevivência de Enxerto/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Retalhos Cirúrgicos/transplante , Animais , Modelos Animais de Doenças , Humanos , Infusões Intravenosas , Masculino , Ratos
17.
Mol Brain ; 14(1): 76, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962678

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative fatal disorder in which motor neurons within the brain and spinal cord degenerate. A single infusion of mesenchymal stem cells (MSCs) delays disease progression by protecting motor neurons and restoring the blood-spinal cord barrier in the SOD1G93A transgenic ALS rat model. However, the therapeutic effect of a single infusion of MSCs is transient and does not block disease progression. In this study, we demonstrated that repeated administration of MSCs (weekly, four times) increased the survival period, protected motor functions, and reduced deterioration of locomotor activity compared to a single infusion and vehicle infusion, after which rats displayed progressive deterioration of hind limb function. We also compared the days until gait ability was lost in rats and found that the repeated-infused group maintained gait ability compared to the single-infusion and vehicle-infusion groups. These results suggest that repeated administration of MSCs may prevent the deterioration of motor function and extend the lifespan in ALS.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/terapia , Longevidade , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Neurônios Motores/patologia , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Barreira Hematoencefálica/patologia , Estimativa de Kaplan-Meier , Ratos Transgênicos
18.
Clin Neurol Neurosurg ; 203: 106565, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33667953

RESUMO

BACKGROUND: Although spinal cord injury (SCI) is a major cause of disability, current therapeutic options remain limited. Recent progress in cellular therapy with mesenchymal stem cells (MSCs) has provided improved function in animal models of SCI. We investigated the safety and feasibility of intravenous infusion of MSCs for SCI patients and assessed functional status after MSC infusion. METHODS: In this phase 2 study of intravenous infusion of autologous MSCs cultured in auto-serum, a single infusion of MSCs under Good Manufacturing Practice (GMP) production was delivered in 13 SCI patients. In addition to assessing feasibility and safety, neurological function was assessed using the American Spinal Injury Association Impairment Scale (ASIA), International Standards for Neurological and Functional Classification of Spinal Cord (ISCSCI-92). Ability of daily living was assessed using Spinal Cord Independence Measure (SCIM-III). The study protocol was based on advice provided by the Pharmaceuticals and Medical Devices Agency in Japan. The trial was registered with the Japan Medical Association (JMA-IIA00154). RESULTS: No serious adverse events were associated with MSC injection. There was neurologic improvement based on ASIA grade in 12 of the 13 patients at six months post-MSC infusion. Five of six patients classified as ASIA A prior to MSC infusion improved to ASIA B (3/6) or ASIA C (2/6), two ASIA B patients improved to ASIA C (1/2) or ASIA D (1/2), five ASIA C patients improved and reached a functional status of ASIA D (5/5). Notably, improvement from ASIA C to ASIA D was observed one day following MSC infusion for all five patients. Assessment of both ISCSCI-92, SCIM-III also demonstrated functional improvements at six months after MSC infusion, compared to the scores prior to MSC infusion in all patients. CONCLUSION: While we emphasize that this study was unblinded, and does not exclude placebo effects or a contribution of endogenous recovery or observer bias, our observations provide evidence supporting the feasibility, safety and functional improvements of infused MSCs into patients with SCI.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Traumatismos da Medula Espinal/terapia , Atividades Cotidianas , Adulto , Idoso , Vértebras Cervicais , Estudos de Coortes , Estudos de Viabilidade , Feminino , Humanos , Infusões Intravenosas , Japão , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/etiologia , Transplante Autólogo , Resultado do Tratamento
19.
World Neurosurg ; 149: e160-e169, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33618048

RESUMO

OBJECTIVE: Reperfusion therapy is a standard therapeutic strategy for acute stroke. Non-favorable outcomes are thought to partially result from impaired microcirculatory flow in ischemic tissue. Intravenous infusion of mesenchymal stem cells (MSCs) reduces stroke volume and improves behavioral function in stroke. One suggested therapeutic mechanism is the restoration of the microvasculature. The goal of this study was to determine whether infused MSCs enhance the therapeutic efficacy of reperfusion therapy following stroke in rats. METHODS: First, to establish a transient middle cerebral artery occlusion (MCAO) model displaying approximately identical neurologic function and lesion volume as seen in permanent MCAO (pMCAO) at day 7 after stroke induction, we transiently occluded the MCA for 90, 110, and 120 minutes. We found that the 110-minute occlusion met these criteria and was used as the transient MCAO (tMCAO) model. Next, 4 MCAO groups were used to compare the therapeutic efficacy of infused MSCs: (1) pMCAO+vehicle, (2) tMCAO+vehicle, (3) pMCAO+MSC, and (4) tMCAO+MSC. Our ischemic model was a unique ischemic model system in which both pMCAO and tMCAO provided similar outcomes during the study period in the groups without MSC infusion groups. Behavioral performance, ischemic volume, and regional cerebral blood flow (rCBF) using arterial spin labeling-magnetic resonance imaging and histologic evaluation of microvasculature was performed. RESULTS: The behavioral function, rCBF, and restoration of microvasculature were greater in group 4 than in group 3. Thus, infused MSCs facilitated the therapeutic efficacy of MCA reperfusion in this rat model system. CONCLUSIONS: Intravenous infusion of MSCs may enhance therapeutic efficacy of reperfusion therapy.


Assuntos
Circulação Cerebrovascular , Infarto da Artéria Cerebral Média/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Revascularização Cerebral/métodos , Infusões Intravenosas , Masculino , Microvasos/patologia , Ratos , Ratos Sprague-Dawley
20.
Lab Anim (NY) ; 50(4): 97-107, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33564191

RESUMO

Animal models are required to study the pathogenesis of brainstem ischemia and to develop new therapeutic approaches to promote functional recovery after ischemia in humans. Few models of brainstem ischemia are available, and they show great variability or cause early lethality. New, reliable animal models are therefore needed. By selectively ligating four points of the lower basilar artery, we developed a new focal basilar artery occlusion model that causes a localized brainstem ischemic lesion in female Sprague-Dawley rats. Analysis of ischemic lesion volume and neurological deficits over a period of 28 d showed that the rats present symptoms specific to this type of stroke while the ischemic lesion remains relatively unchanged over time. This procedure allows higher survival rates and extended observation periods compared with other models of brainstem ischemia. The procedure takes ~40 min, can be performed by researchers with basic surgical skills and does not require specialized surgical equipment. This protocol is highly reliable and will be useful to evaluate new therapeutic approaches to promote functional recovery in patients with brainstem ischemia.


Assuntos
Infartos do Tronco Encefálico , Acidente Vascular Cerebral , Animais , Modelos Animais de Doenças , Feminino , Humanos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...