Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Psychopharmacol ; 37(5): 484-489, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36633290

RESUMO

BACKGROUND: Cannabis use suppresses the endocannabinoid system in healthy individuals. However, the association between cannabis use with the endocannabinoid system is understudied in individuals with psychosis despite the high rate of cannabis use in these individuals. METHODS: We enrolled 83 individuals who were admitted to an inpatient psychiatric unit with psychotic presentations, and measured their plasma levels of main endocannabinoids, Anandamide (AEA) and 2-Acylglycerol (2-AG), and endocannabinoid related compounds, Palmitoylethanolamine, and N-oleoylethanolamine. Cannabis use was assessed with urine toxicology and frequency of cannabis use was assessed using self-reported questionnaires. The Positive and Negative Syndrome Scale was used to assess the severity of psychotic symptoms. RESULTS: Overall, we had 38 individuals in cannabis positive group (CN+) and 45 individuals in cannabis negative group (CN-). Compared to CN-, CN+ group had lower plasma levels of AEA, which remained significant after controlling for age, gender, race/ethnicity, and use of other drugs. CONCLUSION: Cannabis use is associated with low plasma AEA levels in individuals with psychosis, which is in the same line with reported suppressive effects of cannabis on the endocannabinoid system in healthy individuals. Further studies are needed to investigate the clinical significance of this finding.


Assuntos
Cannabis , Alucinógenos , Transtornos Psicóticos , Humanos , Endocanabinoides , Agonistas de Receptores de Canabinoides , Alcamidas Poli-Insaturadas , Transtornos Psicóticos/tratamento farmacológico
2.
Nat Chem Biol ; 18(11): 1236-1244, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35996001

RESUMO

The antimicrobial resistance crisis requires the introduction of novel antibiotics. The use of conventional broad-spectrum compounds selects for resistance in off-target pathogens and harms the microbiome. This is especially true for Mycobacterium tuberculosis, where treatment requires a 6-month course of antibiotics. Here we show that a novel antimicrobial from Photorhabdus noenieputensis, which we named evybactin, is a potent and selective antibiotic acting against M. tuberculosis. Evybactin targets DNA gyrase and binds to a site overlapping with synthetic thiophene poisons. Given the conserved nature of DNA gyrase, the observed selectivity against M. tuberculosis is puzzling. We found that evybactin is smuggled into the cell by a promiscuous transporter of hydrophilic compounds, BacA. Evybactin is the first, but likely not the only, antimicrobial compound found to employ this unusual mechanism of selectivity.


Assuntos
Mycobacterium tuberculosis , Venenos , Tuberculose , Humanos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/metabolismo , Mycobacterium tuberculosis/metabolismo , DNA Girase/genética , Antibacterianos/farmacologia , Tiofenos/metabolismo , Venenos/metabolismo , Antituberculosos/farmacologia
3.
Metabolites ; 12(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35208223

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease, causing loss of motor and nonmotor function. Diagnosis is based on clinical symptoms that do not develop until late in the disease progression, at which point the majority of the patients' dopaminergic neurons are already destroyed. While many PD cases are idiopathic, hereditable genetic risks have been identified, including mutations in the gene for LRRK2, a multidomain kinase with roles in autophagy, mitochondrial function, transcription, molecular structural integrity, the endo-lysosomal system, and the immune response. A definitive PD diagnosis can only be made post-mortem, and no noninvasive or blood-based disease biomarkers are currently available. Alterations in metabolites have been identified in PD patients, suggesting that metabolomics may hold promise for PD diagnostic tools. In this study, we sought to identify metabolic markers of PD in plasma. Using a 1H-13C heteronuclear single quantum coherence spectroscopy (HSQC) NMR spectroscopy metabolomics platform coupled with machine learning (ML), we measured plasma metabolites from approximately age/sex-matched PD patients with G2019S LRRK2 mutations and non-PD controls. Based on the differential level of known and unknown metabolites, we were able to build a ML model and develop a Biomarker of Response (BoR) score, which classified male LRRK2 PD patients with 79.7% accuracy, 81.3% sensitivity, and 78.6% specificity. The high accuracy of the BoR score suggests that the metabolomics/ML workflow described here could be further utilized in the development of a confirmatory diagnostic for PD in larger patient cohorts. A diagnostic assay for PD will aid clinicians and their patients to quickly move toward a definitive diagnosis, and ultimately empower future clinical trials and treatment options.

4.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500549

RESUMO

Gadolinium is a paramagnetic relaxation enhancement (PRE) agent that accelerates the relaxation of metabolite nuclei. In this study, we noted the ability of gadolinium to improve the sensitivity of two-dimensional, non-uniform sampled NMR spectral data collected from metabolomics samples. In time-equivalent experiments, the addition of gadolinium increased the mean signal intensity measurement and the signal-to-noise ratio for metabolite resonances in both standard and plasma samples. Gadolinium led to highly linear intensity measurements that correlated with metabolite concentrations. In the presence of gadolinium, we were able to detect a broad array of metabolites with a lower limit of detection and quantification in the low micromolar range. We also observed an increase in the repeatability of intensity measurements upon the addition of gadolinium. The results of this study suggest that the addition of a gadolinium-based PRE agent to metabolite samples can improve NMR-based metabolomics.


Assuntos
Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Metabolômica/métodos , Aumento da Imagem/métodos , Espectroscopia de Ressonância Magnética/métodos , Razão Sinal-Ruído
6.
Front Pharmacol ; 11: 575691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101030

RESUMO

Adamantyl groups are key structural subunit commonly used in many marketed drugs targeting diseases ranging from viral infections to neurological disorders. The metabolic disposition of adamantyl compounds has been mostly studied using LC-MS based approaches. However, metabolite quantities isolated from biological preparations are often insufficient for unambiguous structural characterization by NMR. In this work, we utilized microcoil NMR in conjunction with LC-MS to characterize liver microsomal metabolites of an adamantyl based CB2 agonist AM9338, 1-(3-(1H-1,2,3-triazol-1-yl) propyl)-N-(adamantan-1-yl)-1H-indazole-3-carboxamide, a candidate compound for potential multiple sclerosis treatment. We have identified a total of 9 oxidative metabolites of AM9338 whereas mono- or di-hydroxylation of the adamantyl moiety is the primary metabolic pathway. While it is generally believed that the tertiary adamantyl carbons are the preferred sites of CYP450 oxidation, both the mono- and di-hydroxyl metabolites of AM9338 show that the primary oxidative sites are located on the secondary adamantyl carbons. To our knowledge this di-hydroxylated metabolite is a novel adamantyl metabolite that has not been reported before. Further, the stereochemistry of both mono- and di-hydroxyl adamantyl metabolites has been determined using NOE correlations. Furthermore, docking of AM9338 into the CYP3A4 metabolic enzyme corroborates with our experimental findings, and the modelling results also provide a possible mechanism for the unusual susceptibility of adamantyl secondary carbons to metabolic oxidations. The novel dihydroxylated AM9338 metabolite identified in this study, along with the previously known adamantyl metabolites, gives a more complete picture of the metabolic disposition for adamantyl compounds.

8.
Nature ; 576(7787): 459-464, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31747680

RESUMO

The current need for novel antibiotics is especially acute for drug-resistant Gram-negative pathogens1,2. These microorganisms have a highly restrictive permeability barrier, which limits the penetration of most compounds3,4. As a result, the last class of antibiotics that acted against Gram-negative bacteria was developed in the 1960s2. We reason that useful compounds can be found in bacteria that share similar requirements for antibiotics with humans, and focus on Photorhabdus symbionts of entomopathogenic nematode microbiomes. Here we report a new antibiotic that we name darobactin, which was obtained using a screen of Photorhabdus isolates. Darobactin is coded by a silent operon with little production under laboratory conditions, and is ribosomally synthesized. Darobactin has an unusual structure with two fused rings that form post-translationally. The compound is active against important Gram-negative pathogens both in vitro and in animal models of infection. Mutants that are resistant to darobactin map to BamA, an essential chaperone and translocator that folds outer membrane proteins. Our study suggests that bacterial symbionts of animals contain antibiotics that are particularly suitable for development into therapeutics.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Fenilpropionatos/isolamento & purificação , Fenilpropionatos/farmacologia , Animais , Antibacterianos/química , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Descoberta de Drogas , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mutação , Nematoides/microbiologia , Óperon/genética , Photorhabdus/química , Photorhabdus/genética , Photorhabdus/isolamento & purificação , Especificidade por Substrato , Simbiose
9.
J Med Chem ; 61(19): 8639-8657, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30196704

RESUMO

The synthesis of potent metabolically stable endocannabinoids is challenging. Here we report a chiral arachidonoyl ethanolamide (AEA) analogue, namely, (13 S,1' R)-dimethylanandamide (AMG315, 3a), a high affinity ligand for the CB1 receptor ( Ki of 7.8 ± 1.4 nM) that behaves as a potent CB1 agonist in vitro (EC50 = 0.6 ± 0.2 nM). (13 S,1' R)-dimethylanandamide is the first potent AEA analogue with significant stability for all endocannabinoid hydrolyzing enzymes as well as the oxidative enzymes COX-2. When tested in vivo using the CFA-induced inflammatory pain model, 3a behaved as a more potent analgesic when compared to endogenous AEA or its hydrolytically stable analogue AM356. This novel analogue will serve as a very useful endocannabinoid probe.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Nociceptividade/efeitos dos fármacos , Receptor CB1 de Canabinoide/fisiologia , Amidoidrolases/química , Amidoidrolases/metabolismo , Analgésicos/química , Animais , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Estabilidade Enzimática , Adjuvante de Freund/toxicidade , Células HEK293 , Humanos , Hiperalgesia/enzimologia , Inflamação/induzido quimicamente , Inflamação/enzimologia , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Camundongos Knockout , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Ratos
10.
Bioorg Med Chem ; 26(18): 4963-4970, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30122284

RESUMO

New oximes short-acting CB1 agonists were explored by the introduction of an internal oxime and polar groups at the C3 alkyl tail of Δ8-THC. The scope of the research was to drastically alter two important physicochemical properties hydrophobicity (log P) and topological surface area (tPSA) of the compound, which play a critical role in tissue distribution and sequestration (depot effect). Key synthesized analogs demonstrated sub-nanomolar affinity for CB1, marked reduction in hydrophobicity (ClogP∼2.5-3.5 vs 9.09 of Δ8-THC-DMH), and found to function as either agonists (trans-oximes) or neutral antagonists (cis-oximes) in a cAMP functional assay. All oxime analogs showed comparable affinity at the CB2 receptor, but surprisingly they were found to function as inverse agonists for CB2. In behavioral studies (i.e. analgesia, hypothermia) trans-oxime 8a exhibited a predictable fast onset (∼20 min) and short duration of pharmacological action (∼180 min), in contrast to the very prolonged duration of Δ8-THC-DMH (>24 h), thus limiting the potential for severe psychotropic side-effects associated with persistent activation of the CB1 receptor. We have conducted 100 ns molecular dynamic (MD) simulations of CB1 complexes with AM11542 (CB1 agonist) and both trans-8a and cis-8b isomeric oximes. These studies revealed that the C3 alkyl tail of cis-8b orientated within the CB1 binding pocket in a manner that triggered a conformational change that stabilized the CB1 receptor at its inactive-state (antagonistic functional effect). In contrast, the trans-8a isomer's conformation was coincided with that of the AM11542 CB1 agonist-bound structure, stabilizing the CB1 receptor at the active-state (agonistic functional effect). We have selected oxime trans-8a based on its potency for CB1, and favorable pharmacodynamic profile, such as fast onset and predictable duration of pharmacological action, for evaluation in pre-clinical models of anorexia nervosa.


Assuntos
Oximas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Analgésicos/química , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Área Sob a Curva , Comportamento Animal/efeitos dos fármacos , Biotransformação , Células HEK293 , Humanos , Hipotermia/induzido quimicamente , Camundongos , Oximas/química , Oximas/farmacocinética , Ratos , Relação Estrutura-Atividade
11.
J Med Chem ; 59(14): 6903-19, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27367336

RESUMO

In pursuit of safer controlled-deactivation cannabinoids with high potency and short duration of action, we report the design, synthesis, and pharmacological evaluation of novel C9- and C11-hydroxy-substituted hexahydrocannabinol (HHC) and tetrahydrocannabinol (THC) analogues in which a seven atom long side chain, with or without 1'-substituents, carries a metabolically labile 2',3'-ester group. Importantly, in vivo studies validated our controlled deactivation approach in rodents and non-human primates. The lead molecule identified here, namely, butyl-2-[(6aR,9R,10aR)-1-hydroxy-9-(hydroxymethyl)-6,6-dimethyl-6a,7,8,9,10,10a-hexahydro-6H-benzo[c]chromen-3-yl]-2-methylpropanoate (AM7499), was found to exhibit remarkably high in vitro and in vivo potency with shorter duration of action than the currently existing classical cannabinoid agonists.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinol/farmacologia , Receptores de Canabinoides/metabolismo , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Agonistas de Receptores de Canabinoides/química , Canabinol/análogos & derivados , Canabinol/química , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Saimiri , Relação Estrutura-Atividade
12.
Recent Pat Biotechnol ; 2(1): 60-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19075854

RESUMO

Hemoglobin, the protein responsible for the red color of blood plays a very important part in 'life'- it transports oxygen, without which humans cannot survive. The idea of using purified Hemoglobin as a possible universal substitute for red blood cells has been around for almost a century. Hemoglobin formulations have important therapeutic applications, especially in case of trauma and war when requirements for blood may be very large. Manufacture of hemoglobin for use as a biopharmaceutical poses practical challenges, owing to dependence on human expired blood and fragility of the protein molecule. Biotechnology can play a critical role in breaking these barriers, by not only ensuring recombinant production of hemoglobin, but also enhancing stability of the molecule. The present article, based on a review of patents and available literature gives an insight into the IPR and technological issues involved in the commercial production of this 'life-saving' protein. There are more than 250 patents worldwide related to hemoglobin formulation, cross-linking and determination.


Assuntos
Biofarmácia/tendências , Biotecnologia/tendências , Substitutos Sanguíneos/uso terapêutico , Desenho de Fármacos , Hemoglobinas/uso terapêutico , Patentes como Assunto/estatística & dados numéricos , Tecnologia Farmacêutica/tendências , Substitutos Sanguíneos/química , Hemoglobinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...