Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106079

RESUMO

In congenital stationary night blindness type 2 (CSNB2)-a disorder involving dysfunction of the Cav1.4 Ca2+ channel-visual impairment is relatively mild considering that Cav1.4 mediates synaptic transmission by rod and cone photoreceptors. Here, we addressed this conundrum using a Cav1.4 knockout (KO) mouse and a knock-in (KI) mouse expressing a non-conducting Cav1.4 mutant. Surprisingly, aberrant Cav3 currents were detected in cones of the KI and KO but not wild-type mice. Cone synapses, which fail to develop in KO mice, are present but enlarged in KI mice. Moreover, light responses in cone pathways and photopic visual behavior are preserved in KI but not in KO mice. In CSNB2, we propose that Cav3 channels maintain cone synaptic output provided that the Ca2+-independent role of Cav1.4 in cone synaptogenesis remains intact. Our findings reveal an unexpected form of homeostatic plasticity that relies on a non-canonical role of an ion channel.

2.
iScience ; 26(11): 108113, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37915604

RESUMO

Sensitivity of primate daylight vision varies across the visual field. This is attributed to regional variations in cone photoreceptor density and synaptic connectivity of the underlying circuitry. In contrast, we have limited understanding of how synapse organization of the primate night vision pathway changes across space. Using serial electron microscopy, we reconstructed the first synapse of the night vision pathway between rod photoreceptors and second-order neurons, at multiple locations from the central part of the primate retina, fovea, to the periphery. We find that most facets of the rod synapse connectivity vary across retinal regions. However, rod synaptic divergence and convergence patterns do not change in the same manner across locations. Moreover, patterns of rod synapse organization are tightly correlated with photoreceptor density. Such regional heterogeneities revise the connectivity diagram of the primate rod synapse which will shape synapse function and sensitivity of the night vision pathway across visual space.

3.
Curr Biol ; 33(20): 4415-4429.e3, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37769662

RESUMO

Experience regulates synapse formation and function across sensory circuits. How inhibitory synapses in the mammalian retina are sculpted by visual cues remains unclear. By use of a sensory deprivation paradigm, we find that visual cues regulate maturation of two GABA synapse types (GABAA and GABAC receptor synapses), localized across the axon terminals of rod bipolar cells (RBCs)-second-order retinal neurons integral to the night-vision circuit. Lack of visual cues causes GABAA synapses at RBC terminals to retain an immature receptor configuration with slower response profiles and prevents receptor recruitment at GABAC synapses. Additionally, the organizing protein for both these GABA synapses, LRRTM4, is not clustered at dark-reared RBC synapses. Ultrastructurally, the total number of ribbon-output/inhibitory-input synapses across RBC terminals remains unaltered by sensory deprivation, although ribbon synapse output sites are misarranged when the circuit develops without visual cues. Intrinsic electrophysiological properties of RBCs and expression of chloride transporters across RBC terminals are additionally altered by sensory deprivation. Introduction to normal 12-h light-dark housing conditions facilitates maturation of dark-reared RBC GABA synapses and restoration of intrinsic RBC properties, unveiling a new element of light-dependent retinal cellular and synaptic plasticity.


Assuntos
Retina , Privação Sensorial , Animais , Retina/fisiologia , Células Bipolares da Retina/fisiologia , Terminações Pré-Sinápticas/metabolismo , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo , Mamíferos
4.
Curr Biol ; 32(2): 315-328.e4, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34822767

RESUMO

The morphology of retinal neurons strongly influences their physiological function. Ganglion cell (GC) dendrites ramify in distinct strata of the inner plexiform layer (IPL) so that GCs responding to light increments (ON) or decrements (OFF) receive appropriate excitatory inputs. This vertical stratification prescribes response polarity and ensures consistent connectivity between cell types, whereas the lateral extent of GC dendritic arbors typically dictates receptive field (RF) size. Here, we identify circuitry in mouse retina that contradicts these conventions. AII amacrine cells are interneurons understood to mediate "crossover" inhibition by relaying excitatory input from the ON layer to inhibitory outputs in the OFF layer. Ultrastructural and physiological analyses show, however, that some AIIs deliver powerful inhibition to OFF GC somas and proximal dendrites in the ON layer, rendering the inhibitory RFs of these GCs smaller than their dendritic arbors. This OFF pathway, avoiding entirely the OFF region of the IPL, challenges several tenets of retinal circuitry. These results also indicate that subcellular synaptic organization can vary within a single population of neurons according to their proximity to potential postsynaptic targets.


Assuntos
Retina , Sinapses , Células Amácrinas/fisiologia , Animais , Dendritos/fisiologia , Interneurônios/fisiologia , Mamíferos , Camundongos , Retina/fisiologia , Sinapses/fisiologia
5.
Curr Biol ; 31(19): 4314-4326.e5, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34433078

RESUMO

Developing neural circuits, including GABAergic circuits, switch receptor types. But the role of early GABA receptor expression for establishment of functional inhibitory circuits remains unclear. Tracking the development of GABAergic synapses across axon terminals of retinal bipolar cells (BCs), we uncovered a crucial role of early GABAA receptor expression for the formation and function of presynaptic inhibitory synapses. Specifically, early α3-subunit-containing GABAA (GABAAα3) receptors are a key developmental organizer. Before eye opening, GABAAα3 gives way to GABAAα1 at individual BC presynaptic inhibitory synapses. The developmental downregulation of GABAAα3 is independent of GABAAα1 expression. Importantly, lack of early GABAAα3 impairs clustering of GABAAα1 and formation of functional GABAA synapses across mature BC terminals. This impacts the sensitivity of visual responses transmitted through the circuit. Lack of early GABAAα3 also perturbs aggregation of LRRTM4, the organizing protein at GABAergic synapses of rod BC terminals, and their arrangement of output ribbon synapses.


Assuntos
Receptores de GABA , Sinapses , Proteínas de Transporte/metabolismo , Terminações Pré-Sinápticas/fisiologia , Receptores de GABA/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Células Bipolares da Retina/fisiologia , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo
6.
J Neurosci ; 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34083252

RESUMO

Amacrine cells are interneurons composing the most diverse cell class in the mammalian retina. They help encode visual features such as edges or directed motion by mediating excitatory and inhibitory interactions between input (i.e. bipolar) and output (i.e. ganglion) neurons in the inner plexiform layer (IPL). Like other brain regions, the retina also contains glial cells that contribute to neurotransmitter uptake, metabolic regulation and neurovascular control. Here, we report that in mouse retina (of either sex), an abundant, though previously unstudied inhibitory amacrine cell is coupled directly to Müller glia. Electron microscopic reconstructions of this amacrine type revealed chemical synapses with known retinal cell types and extensive associations with Müller glia, the processes of which often completely ensheathe the neurites of this amacrine cell. Microinjecting small tracer molecules into the somas of these amacrine cells led to selective labelling of nearby Müller glia, leading us to suggest the name "Müller glia-coupled amacrine cell," or MAC. Our data also indicate that MACs release glycine at conventional chemical synapses, and viral retrograde transsynaptic tracing from the dorsal lateral geniculate nucleus (dLGN) showed selective connections between MACs and a subpopulation of RGC types. Visually-evoked responses revealed a strong preference for light increments; these "ON" responses were primarily mediated by excitatory chemical synaptic input and direct electrical coupling with other cells. This initial characterization of the MAC provides the first evidence for neuron-glia coupling in the mammalian retina and identifies the MAC as a potential link between inhibitory processing and glial function.Significance Statement:Gap junctions between pairs of neurons or glial cells are commonly found throughout the nervous system and play multiple roles, including electrical coupling and metabolic exchange. In contrast, gap junctions between neurons and glia cells have rarely been reported and are poorly understood. Here we report the first evidence for neuron-glia coupling in the mammalian retina, specifically between an abundant (but previously unstudied) inhibitory interneuron and Müller glia. Moreover, viral tracing, optogenetics and serial electron microscopy provide new information about the neuron's synaptic partners and physiological responses.

7.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904401

RESUMO

Output signals of neural circuits, including the retina, are shaped by a combination of excitatory and inhibitory signals. Inhibitory signals can act presynaptically on axon terminals to control neurotransmitter release and regulate circuit function. However, it has been difficult to study the role of presynaptic inhibition in most neural circuits due to lack of cell type-specific and receptor type-specific perturbations. In this study, we used a transgenic approach to selectively eliminate GABAA inhibitory receptors from select types of second-order neurons - bipolar cells - in mouse retina and examined how this affects the light response properties of the well-characterized ON alpha ganglion cell retinal circuit. Selective loss of GABAA receptor-mediated presynaptic inhibition causes an enhanced sensitivity and slower kinetics of light-evoked responses from ON alpha ganglion cells thus highlighting the role of presynaptic inhibition in gain control and temporal filtering of sensory signals in a key neural circuit in the mammalian retina.


Assuntos
Antagonistas de Receptores de GABA-A/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Neurônios Retinianos/efeitos dos fármacos , Animais , Feminino , Cinética , Luz , Masculino , Camundongos , Camundongos Knockout , Terminações Pré-Sinápticas/fisiologia , Receptores de GABA-A/fisiologia , Neurônios Retinianos/fisiologia , Neurônios Retinianos/efeitos da radiação
8.
Cell Rep ; 34(11): 108858, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730586

RESUMO

In the retina, amacrine interneurons inhibit retinal ganglion cell (RGC) dendrites to shape retinal output. Amacrine cells typically use either GABA or glycine to exert synaptic inhibition. Here, we combined transgenic tools with immunohistochemistry, electrophysiology, and 3D electron microscopy to determine the composition and organization of inhibitory synapses across the dendritic arbor of a well-characterized RGC type in the mouse retina: the ON-sustained alpha RGC. We find mixed GABA-glycine receptor synapses across this RGC type, unveiling the existence of "mixed" inhibitory synapses in the retinal circuit. Presynaptic amacrine boutons with dual release sites are apposed to ON-sustained alpha RGC postsynapses. We further reveal the sequence of postsynaptic assembly for these mixed synapses: GABA receptors precede glycine receptors, and a lack of early GABA receptor expression impedes the recruitment of glycine receptors. Together our findings uncover the organization and developmental profile of an additional motif of inhibition in the mammalian retina.


Assuntos
Glicina/metabolismo , Inibição Neural , Células Ganglionares da Retina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Células Amácrinas/metabolismo , Animais , Dendritos/metabolismo , Regulação para Baixo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Neurotransmissores/metabolismo , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Células Ganglionares da Retina/ultraestrutura , Sinapses/metabolismo
9.
Elife ; 92020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32940604

RESUMO

Synapses are fundamental information processing units that rely on voltage-gated Ca2+ (Cav) channels to trigger Ca2+-dependent neurotransmitter release. Cav channels also play Ca2+-independent roles in other biological contexts, but whether they do so in axon terminals is unknown. Here, we addressed this unknown with respect to the requirement for Cav1.4 L-type channels for the formation of rod photoreceptor synapses in the retina. Using a mouse strain expressing a non-conducting mutant form of Cav1.4, we report that the Cav1.4 protein, but not its Ca2+ conductance, is required for the molecular assembly of rod synapses; however, Cav1.4 Ca2+ signals are needed for the appropriate recruitment of postsynaptic partners. Our results support a model in which presynaptic Cav channels serve both as organizers of synaptic building blocks and as sources of Ca2+ ions in building the first synapse of the visual pathway and perhaps more broadly in the nervous system.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Terminações Pré-Sinápticas/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Animais , Masculino , Camundongos
10.
Methods Mol Biol ; 2177: 69-81, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32632806

RESUMO

This chapter describes methods to enhanced contrast of plant material processed by high-pressure freezing and freeze substitution for improved visualization by serial block-face scanning electron microscopy (SBEM). The contrast enhancing steps are based on a protocol involving the sequential incubation of samples in heavy metals and sodium thiocarbohydrazide (OTO staining). We also describe the pipeline for imaging plant tissues in a commercial SBEM system (Gatan 3View®) and routines for the image analysis and three-dimensional reconstructions using open-source and commercial software packages.


Assuntos
Arabidopsis/ultraestrutura , Microscopia Eletrônica de Varredura/instrumentação , Substituição ao Congelamento , Microtomia/instrumentação
11.
Invest Ophthalmol Vis Sci ; 61(2): 17, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32053727

RESUMO

Purpose: Vigabatrin (VGB) is an effective antiepileptic that increases concentrations of inhibitory γ-aminobutyric acid (GABA) by inhibiting GABA transaminase. Reports of VGB-associated visual field loss limit its clinical usefulness, and retinal toxicity studies in laboratory animals have yielded conflicting results. Methods: We examined the functional and morphologic effects of VGB in C57BL/6J mice that received either VGB or saline IP from 10 to 18 weeks of age. Retinal structure and function were assessed in vivo by optical coherence tomography (OCT), ERG, and optomotor response. After euthanasia, retinas were processed for immunohistochemistry, and retinal GABA, and VGB quantified by mass spectrometry. Results: No significant differences in visual acuity or total retinal thickness were identified between groups by optomotor response or optical coherence tomography, respectively. After 4 weeks of VGB treatment, ERG b-wave amplitude was enhanced, and amplitudes of oscillatory potentials were reduced. Dramatic rod and cone bipolar and horizontal cell remodeling, with extension of dendrites into the outer nuclear layer, was observed in retinas of VGB-treated mice. VGB treatment resulted in a mean 3.3-fold increase in retinal GABA concentration relative to controls and retinal VGB concentrations that were 20-fold greater than brain. Conclusions: No evidence of significant retinal thinning or ERG a- or b-wave deficits were apparent, although we describe significant alterations in ERG b-wave and oscillatory potentials and in retinal cell morphology in VGB-treated C57BL/6J mice. The dramatic concentration of VGB in retina relative to the target tissue (brain), with a corresponding increase in retinal GABA, offers insight into the pathophysiology of VGB-associated visual field loss.


Assuntos
Anticonvulsivantes/farmacologia , GABAérgicos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Retina/efeitos dos fármacos , Vigabatrina/farmacologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Músculos Oculomotores/efeitos dos fármacos , Distribuição Aleatória , Retina/fisiopatologia , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/fisiopatologia , Tomografia de Coerência Óptica , Campos Visuais/fisiologia
12.
Neuron ; 105(6): 1007-1017.e5, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31974009

RESUMO

LRRTM4 is a transsynaptic adhesion protein regulating glutamatergic synapse assembly on dendrites of central neurons. In the mouse retina, we find that LRRTM4 is enriched at GABAergic synapses on axon terminals of rod bipolar cells (RBCs). Knockout of LRRTM4 reduces RBC axonal GABAA and GABAC receptor clustering and disrupts presynaptic inhibition onto RBC terminals. LRRTM4 removal also perturbs the stereotyped output synapse arrangement at RBC terminals. Synaptic ribbons are normally apposed to two distinct postsynaptic "dyad" partners, but in the absence of LRRTM4, "monad" and "triad" arrangements are also formed. RBCs from retinas deficient in GABA release also demonstrate dyad mis-arrangements but maintain LRRTM4 expression, suggesting that defects in dyad organization in the LRRTM4 knockout could originate from reduced GABA receptor function. LRRTM4 is thus a key synapse organizing molecule at RBC terminals, where it regulates function of GABAergic synapses and assembly of RBC synaptic dyads.


Assuntos
Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células Bipolares da Retina/fisiologia , Animais , Feminino , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Receptores de GABA/metabolismo , Receptores de GABA/fisiologia , Retina/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Ácido gama-Aminobutírico/metabolismo
13.
Neural Dev ; 13(1): 12, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875009

RESUMO

Inhibition in the central nervous systems (CNS) is mediated by two neurotransmitters: gamma-aminobutyric acid (GABA) and glycine. Inhibitory synapses are generally GABAergic or glycinergic, although there are synapses that co-release both neurotransmitter types. Compared to excitatory circuits, much less is known about the cellular and molecular mechanisms that regulate synaptic partner selection and wiring patterns of inhibitory circuits. Recent work, however, has begun to fill this gap in knowledge, providing deeper insight into whether GABAergic and glycinergic circuit assembly and maintenance rely on common or distinct mechanisms. Here we summarize and contrast the developmental mechanisms that regulate the selection of synaptic partners, and that promote the formation, refinement, maturation and maintenance of GABAergic and glycinergic synapses and their respective wiring patterns. We highlight how some parts of the CNS demonstrate developmental changes in the type of inhibitory transmitter or receptor composition at their inhibitory synapses. We also consider how perturbation of the development or maintenance of one type of inhibitory connection affects other inhibitory synapse types in the same circuit. Mechanistic insight into the development and maintenance of GABAergic and glycinergic inputs, and inputs that co-release both these neurotransmitters could help formulate comprehensive therapeutic strategies for treating disorders of synaptic inhibition.


Assuntos
Glicina/metabolismo , Rede Nervosa/fisiologia , Sistema Nervoso/citologia , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Humanos , Mamíferos
14.
PLoS One ; 12(7): e0181011, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28708891

RESUMO

The postsynaptic adhesion proteins Neuroligins (NLs) are essential for proper synapse function, and their alterations are associated with a variety of neurodevelopmental disorders. It is increasingly clear that each NL isoform occupies specific subsets of synapses and is able to regulate the function of discrete networks. Studies of NL2 and NL4 in the retina in particular have contributed towards uncovering their role in inhibitory synapse function. In this study we show that NL3 is also predominantly expressed at inhibitory postsynapses in the retinal inner plexiform layer (IPL), where it colocalizes with both GABAA- and glycinergic receptor clusters in a 3:2 ratio. In the NL3 deletion-mutant (knockout or KO) mouse, we uncovered a dramatic reduction of the number of GABAAα2-subunit containing GABAA receptor clusters at the IPL. Retinal activity was thereafter assessed in KO and wild-type (WT) littermates by multi-electrode-array recordings of the output cells of retina, the retinal ganglion cells (RGCs). RGCs in the NL3 KO showed reduced spontaneous activity and an altered response to white noise stimulation. Moreover, upon application of light flashes, the proportion of cells firing at light offset (OFF RGCs) was significantly lower in the NL3 KO compared to WT littermates, whereas the relative number of cells firing at light onset (ON RGCs) increased. Interestingly, although GABAAα2-bearing receptors have been related to direction-selective circuits of the retina, features of direction selective-retinal ganglion cells recorded remained unperturbed in the NL3 KO. Together our data underscore the importance of NL3 for the integrity of specific GABAAergic retinal circuits and identifies NL3 as an important regulator of retinal activity.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptores de GABA-A/metabolismo , Retina/metabolismo , Animais , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular Neuronais/deficiência , Regulação para Baixo , Imuno-Histoquímica , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteínas do Tecido Nervoso/deficiência , Técnicas de Patch-Clamp , Retina/patologia , Células Ganglionares da Retina/metabolismo , Sinapses/metabolismo
15.
Elife ; 62017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394253

RESUMO

The maintenance of excitatory and inhibitory balance in the brain is essential for its function. Here we find that the developmental axon guidance receptor Roundabout 2 (Robo2) is critical for the maintenance of inhibitory synapses in the adult ventral tegmental area (VTA), a brain region important for the production of the neurotransmitter dopamine. Following selective genetic inactivation of Robo2 in the adult VTA of mice, reduced inhibitory control results in altered neural activity patterns, enhanced phasic dopamine release, behavioral hyperactivity, associative learning deficits, and a paradoxical inversion of psychostimulant responses. These behavioral phenotypes could be phenocopied by selective inactivation of synaptic transmission from local GABAergic neurons of the VTA, demonstrating an important function for Robo2 in regulating the excitatory and inhibitory balance of the adult brain.


Assuntos
Dopamina/metabolismo , Receptores Imunológicos/metabolismo , Transmissão Sináptica , Área Tegmentar Ventral/fisiologia , Animais , Comportamento Animal , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos Endogâmicos C57BL , Ácido gama-Aminobutírico/metabolismo
16.
Cell ; 168(3): 413-426.e12, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28129540

RESUMO

The fovea is a specialized region of the retina that dominates the visual perception of primates by providing high chromatic and spatial acuity. While the foveal and peripheral retina share a similar core circuit architecture, they exhibit profound functional differences whose mechanisms are unknown. Using intracellular recordings and structure-function analyses, we examined the cellular and synaptic underpinnings of the primate fovea. Compared to peripheral vision, the fovea displays decreased sensitivity to rapid variations in light inputs; this difference is reflected in the responses of ganglion cells, the output cells of the retina. Surprisingly, and unlike in the periphery, synaptic inhibition minimally shaped the responses of foveal midget ganglion cells. This difference in inhibition cannot however, explain the differences in the temporal sensitivity of foveal and peripheral midget ganglion cells. Instead, foveal cone photoreceptors themselves exhibited slower light responses than peripheral cones, unexpectedly linking cone signals to perceptual sensitivity.


Assuntos
Fóvea Central/fisiologia , Macaca/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Percepção Visual , Animais , Cinética , Células Fotorreceptoras de Vertebrados/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses
17.
Methods Mol Biol ; 1538: 293-320, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27943198

RESUMO

Labeling fixed brain tissue with fluorescent synaptic and cellular markers can help assess circuit connectivity. Despite the diffraction-limited resolution of light microscopy there are several approaches to identify synaptic contacts onto a cell-of-interest. Understanding which image quantification methods can be applied to estimate cellular and synaptic connectivity at the light microscope level is beneficial to answer a range of questions, from mapping appositions between cellular structures or synaptic proteins to assessing synaptic contact density onto a cell-of-interest. This chapter provides the reader with details of the image analysis methods that can be applied to quantify in situ connectivity patterns at the level of cellular contacts and synaptic appositions.


Assuntos
Biomarcadores , Imunofluorescência , Microscopia Confocal , Neurônios/fisiologia , Sinapses/fisiologia , Processamento de Imagem Assistida por Computador , Interneurônios/metabolismo , Células Bipolares da Retina/metabolismo , Software
18.
Curr Biol ; 26(15): 2070-2077, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27426514

RESUMO

Excitatory and inhibitory neurons in the CNS are distinguished by several features, including morphology, transmitter content, and synapse architecture [1]. Such distinctions are exemplified in the vertebrate retina. Retinal bipolar cells are polarized glutamatergic neurons receiving direct photoreceptor input, whereas amacrine cells are usually monopolar inhibitory interneurons with synapses almost exclusively in the inner retina [2]. Bipolar but not amacrine cell synapses have presynaptic ribbon-like structures at their transmitter release sites. We identified a monopolar interneuron in the mouse retina that resembles amacrine cells morphologically but is glutamatergic and, unexpectedly, makes ribbon synapses. These glutamatergic monopolar interneurons (GluMIs) do not receive direct photoreceptor input, and their light responses are strongly shaped by both ON and OFF pathway-derived inhibitory input. GluMIs contact and make almost as many synapses as type 2 OFF bipolar cells onto OFF-sustained A-type (AOFF-S) retinal ganglion cells (RGCs). However, GluMIs and type 2 OFF bipolar cells possess functionally distinct light-driven responses and may therefore mediate separate components of the excitatory synaptic input to AOFF-S RGCs. The identification of GluMIs thus unveils a novel cellular component of excitatory circuits in the vertebrate retina, underscoring the complexity in defining cell types even in this well-characterized region of the CNS.


Assuntos
Células Amácrinas/citologia , Neurônios GABAérgicos/citologia , Ácido Glutâmico/metabolismo , Células Ganglionares da Retina/citologia , Células Amácrinas/metabolismo , Células Amácrinas/ultraestrutura , Animais , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/ultraestrutura , Masculino , Camundongos , Camundongos Transgênicos , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/ultraestrutura , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/ultraestrutura
19.
Invest Ophthalmol Vis Sci ; 57(3): 1418-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27028063

RESUMO

PURPOSE: Recent studies suggest that the neural retinal response to light is compromised in diabetes. Electroretinogram studies suggest that the dim light retinal rod pathway is especially susceptible to diabetic damage. The purpose of this study was to determine whether diabetes alters rod pathway signaling. METHODS: Diabetes was induced in C57BL/6J mice by three intraperitoneal injections of streptozotocin (STZ; 75 mg/kg), and confirmed by blood glucose levels > 200 mg/dL. Six weeks after the first injection, whole-cell voltage clamp recordings of spontaneous and light-evoked inhibitory postsynaptic currents from rod bipolar cells were made in dark-adapted retinal slices. Light-evoked excitatory currents from rod bipolar and AII amacrine cells, and spontaneous excitatory currents from AII amacrine cells were also measured. Receptor inputs were pharmacologically isolated. Immunohistochemistry was performed on whole mounted retinas. RESULTS: Rod bipolar cells had reduced light-evoked inhibitory input from amacrine cells but no change in excitatory input from rod photoreceptors. Reduced light-evoked inhibition, mediated by both GABAA and GABAC receptors, increased rod bipolar cell output onto AII amacrine cells. Spontaneous release of GABA onto rod bipolar cells was increased, which may limit GABA availability for light-evoked release. These physiological changes occurred in the absence of retinal cell loss or changes in GABAA receptor expression levels. CONCLUSIONS: Our results indicate that early diabetes causes deficits in the rod pathway leading to decreased light-evoked rod bipolar cell inhibition and increased rod pathway output that provide a basis for the development of early diabetic visual deficits.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Retinopatia Diabética/fisiopatologia , Potenciais Evocados Visuais/fisiologia , Neurônios Retinianos/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Animais , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Seguimentos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Estimulação Luminosa , Transdução de Sinais , Fatores de Tempo
20.
Proc Natl Acad Sci U S A ; 112(41): 12840-5, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26420868

RESUMO

Neuronal output is modulated by inhibition onto both dendrites and axons. It is unknown whether inhibitory synapses at these two cellular compartments of an individual neuron are regulated coordinately or separately during in vivo development. Because neurotransmission influences synapse maturation and circuit development, we determined how loss of inhibition affects the expression of diverse types of inhibitory receptors on the axon and dendrites of mouse retinal bipolar cells. We found that axonal GABA but not glycine receptor expression depends on neurotransmission. Importantly, axonal and dendritic GABAA receptors comprise distinct subunit compositions that are regulated differentially by GABA release: Axonal GABAA receptors are down-regulated but dendritic receptors are up-regulated in the absence of inhibition. The homeostatic increase in GABAA receptors on bipolar cell dendrites is pathway-specific: Cone but not rod bipolar cell dendrites maintain an up-regulation of receptors in the transmission deficient mutants. Furthermore, the bipolar cell GABAA receptor alterations are a consequence of impaired vesicular GABA release from amacrine but not horizontal interneurons. Thus, inhibitory neurotransmission regulates in vivo postsynaptic maturation of inhibitory synapses with contrasting modes of action specific to synapse type and location.


Assuntos
Axônios/metabolismo , Dendritos/metabolismo , Receptores de GABA-A/metabolismo , Células Bipolares da Retina/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Dendritos/genética , Camundongos , Camundongos Transgênicos , Receptores de GABA-A/genética , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Sinapses/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...