Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Geroscience ; 46(2): 1543-1560, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37653270

RESUMO

Using mouse models and high-throughput proteomics, we conducted an in-depth analysis of the proteome changes induced in response to seven interventions known to increase mouse lifespan. This included two genetic mutations, a growth hormone receptor knockout (GHRKO mice) and a mutation in the Pit-1 locus (Snell dwarf mice), four drug treatments (rapamycin, acarbose, canagliflozin, and 17α-estradiol), and caloric restriction. Each of the interventions studied induced variable changes in the concentrations of proteins across liver, kidney, and gastrocnemius muscle tissue samples, with the strongest responses in the liver and limited concordance in protein responses across tissues. To the extent that these interventions promote longevity through common biological mechanisms, we anticipated that proteins associated with longevity could be identified by characterizing shared responses across all or multiple interventions. Many of the proteome alterations induced by each intervention were distinct, potentially implicating a variety of biological pathways as being related to lifespan extension. While we found no protein that was affected similarly by every intervention, we identified a set of proteins that responded to multiple interventions. These proteins were functionally diverse but tended to be involved in peroxisomal oxidation and metabolism of fatty acids. These results provide candidate proteins and biological mechanisms related to enhancing longevity that can inform research on therapeutic approaches to promote healthy aging.


Assuntos
Longevidade , Proteoma , Camundongos , Animais , Longevidade/genética , Proteoma/metabolismo , Proteômica , Fatores de Transcrição/genética , Receptores da Somatotropina
3.
J Biomol Tech ; 34(3)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37969874

RESUMO

Metaproteomics research using mass spectrometry data has emerged as a powerful strategy to understand the mechanisms underlying microbiome dynamics and the interaction of microbiomes with their immediate environment. Recent advances in sample preparation, data acquisition, and bioinformatics workflows have greatly contributed to progress in this field. In 2020, the Association of Biomolecular Research Facilities Proteome Informatics Research Group launched a collaborative study to assess the bioinformatics options available for metaproteomics research. The study was conducted in 2 phases. In the first phase, participants were provided with mass spectrometry data files and were asked to identify the taxonomic composition and relative taxa abundances in the samples without supplying any protein sequence databases. The most challenging question asked of the participants was to postulate the nature of any biological phenomena that may have taken place in the samples, such as interactions among taxonomic species. In the second phase, participants were provided a protein sequence database composed of the species present in the sample and were asked to answer the same set of questions as for phase 1. In this report, we summarize the data processing methods and tools used by participants, including database searching and software tools used for taxonomic and functional analysis. This study provides insights into the status of metaproteomics bioinformatics in participating laboratories and core facilities.


Assuntos
Proteoma , Proteômica , Humanos , Proteômica/métodos , Software , Biologia Computacional , Bases de Dados de Proteínas
4.
Nat Cancer ; 4(11): 1592-1609, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37904046

RESUMO

Safely expanding indications for cellular therapies has been challenging given a lack of highly cancer-specific surface markers. Here we explore the hypothesis that tumor cells express cancer-specific surface protein conformations that are invisible to standard target discovery pipelines evaluating gene or protein expression, and these conformations can be identified and immunotherapeutically targeted. We term this strategy integrating cross-linking mass spectrometry with glycoprotein surface capture 'structural surfaceomics'. As a proof of principle, we apply this technology to acute myeloid leukemia (AML), a hematologic malignancy with dismal outcomes and no known optimal immunotherapy target. We identify the activated conformation of integrin ß2 as a structurally defined, widely expressed AML-specific target. We develop and characterize recombinant antibodies to this protein conformation and show that chimeric antigen receptor T cells eliminate AML cells and patient-derived xenografts without notable toxicity toward normal hematopoietic cells. Our findings validate an AML conformation-specific target antigen and demonstrate a tool kit for applying these strategies more broadly.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Integrinas/metabolismo , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/genética
5.
Commun Biol ; 6(1): 768, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481675

RESUMO

Aging manifests as progressive deteriorations in homeostasis, requiring systems-level perspectives to investigate the gradual molecular dysregulation of underlying biological processes. Here, we report systemic changes in the molecular regulation of biological processes under multiple lifespan-extending interventions. Differential Rank Conservation (DIRAC) analyses of mouse liver proteomics and transcriptomics data show that mechanistically distinct lifespan-extending interventions (acarbose, 17α-estradiol, rapamycin, and calorie restriction) generally tighten the regulation of biological modules. These tightening patterns are similar across the interventions, particularly in processes such as fatty acid oxidation, immune response, and stress response. Differences in DIRAC patterns between proteins and transcripts highlight specific modules which may be tightened via augmented cap-independent translation. Moreover, the systemic shifts in fatty acid metabolism are supported through integrated analysis of liver transcriptomics data with a mouse genome-scale metabolic model. Our findings highlight the power of systems-level approaches for identifying and characterizing the biological processes involved in aging and longevity.


Assuntos
Metabolismo dos Lipídeos , Longevidade , Animais , Camundongos , Envelhecimento , Modelos Animais de Doenças , Fígado , Ácidos Graxos
6.
Am J Respir Cell Mol Biol ; 68(6): 651-663, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36780661

RESUMO

The integration of transcriptomic and proteomic data from lung tissue with chronic obstructive pulmonary disease (COPD)-associated genetic variants could provide insight into the biological mechanisms of COPD. Here, we assessed associations between lung transcriptomics and proteomics with COPD in 98 subjects from the Lung Tissue Research Consortium. Low correlations between transcriptomics and proteomics were generally observed, but higher correlations were found for COPD-associated proteins. We integrated COPD risk SNPs or SNPs near COPD-associated proteins with lung transcripts and proteins to identify regulatory cis-quantitative trait loci (QTLs). Significant expression QTLs (eQTLs) and protein QTLs (pQTLs) were found regulating multiple COPD-associated biomarkers. We investigated mediated associations from significant pQTLs through transcripts to protein levels of COPD-associated proteins. We also attempted to identify colocalized effects between COPD genome-wide association studies and eQTL and pQTL signals. Evidence was found for colocalization between COPD genome-wide association study signals and a pQTL for RHOB and an eQTL for DSP. We applied weighted gene co-expression network analysis to find consensus COPD-associated network modules. Two network modules generated by consensus weighted gene co-expression network analysis were associated with COPD with a false discovery rate lower than 0.05. One network module is related to the catenin complex, and the other module is related to plasma membrane components. In summary, multiple cis-acting determinants of transcripts and proteins associated with COPD were identified. Colocalization analysis, mediation analysis, and correlation-based network analysis of multiple omics data may identify key genes and proteins that work together to influence COPD pathogenesis.


Assuntos
Proteômica , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudo de Associação Genômica Ampla , Transcriptoma/genética , Predisposição Genética para Doença , Doença Pulmonar Obstrutiva Crônica/patologia , Pulmão/patologia , Polimorfismo de Nucleotídeo Único
8.
J Proteome Res ; 22(2): 615-624, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36648445

RESUMO

The Trans-Proteomic Pipeline (TPP) mass spectrometry data analysis suite has been in continual development and refinement since its first tools, PeptideProphet and ProteinProphet, were published 20 years ago. The current release provides a large complement of tools for spectrum processing, spectrum searching, search validation, abundance computation, protein inference, and more. Many of the tools include machine-learning modeling to extract the most information from data sets and build robust statistical models to compute the probabilities that derived information is correct. Here we present the latest information on the many TPP tools, and how TPP can be deployed on various platforms from personal Windows laptops to Linux clusters and expansive cloud computing environments. We describe tutorials on how to use TPP in a variety of ways and describe synergistic projects that leverage TPP. We conclude with plans for continued development of TPP.


Assuntos
Proteômica , Software , Proteômica/métodos , Espectrometria de Massas , Probabilidade , Análise de Dados
9.
J Proteome Res ; 22(2): 561-569, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598107

RESUMO

The Crux tandem mass spectrometry data analysis toolkit provides a collection of algorithms for analyzing bottom-up proteomics tandem mass spectrometry data. Many publications have described various individual components of Crux, but a comprehensive summary has not been published since 2014. The goal of this work is to summarize the functionality of Crux, focusing on developments since 2014. We begin with empirical results demonstrating our recently implemented speedups to the Tide search engine. Other new features include a new score function in Tide, two new confidence estimation procedures, as well as three new tools: Param-medic for estimating search parameters directly from mass spectrometry data, Kojak for searching cross-linked mass spectra, and DIAmeter for searching data independent acquisition data against a sequence database.


Assuntos
Software , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Bases de Dados de Proteínas , Algoritmos
10.
J Proteome Res ; 22(2): 647-655, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36629399

RESUMO

Fragmentation ion spectral analysis of chemically cross-linked proteins is an established technology in the proteomics research repertoire for determining protein interactions, spatial orientation, and structure. Here we present Kojak version 2.0, a major update to the original Kojak algorithm, which was developed to identify cross-linked peptides from fragment ion spectra using a database search approach. A substantially improved algorithm with updated scoring metrics, support for cleavable cross-linkers, and identification of cross-links between 15N-labeled homomultimers are among the newest features of Kojak 2.0 presented here. Kojak 2.0 is now integrated into the Trans-Proteomic Pipeline, enabling access to dozens of additional tools within that suite. In particular, the PeptideProphet and iProphet tools for validation of cross-links improve the sensitivity and accuracy of correct cross-link identifications at user-defined thresholds. These new features improve the versatility of the algorithm, enabling its use in a wider range of experimental designs and analysis pipelines. Kojak 2.0 remains open-source and multiplatform.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Proteínas/química , Software , Reagentes de Ligações Cruzadas/química
11.
Anal Chem ; 94(8): 3501-3509, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35184559

RESUMO

Drugs are often metabolized to reactive intermediates that form protein adducts. Adducts can inhibit protein activity, elicit immune responses, and cause life-threatening adverse drug reactions. The masses of reactive metabolites are frequently unknown, rendering traditional mass spectrometry-based proteomics approaches incapable of adduct identification. Here, we present Magnum, an open-mass search algorithm optimized for adduct identification, and Limelight, a web-based data processing package for analysis and visualization of data from all existing algorithms. Limelight incorporates tools for sample comparisons and xenobiotic-adduct discovery. We validate our tools with three drug/protein combinations and apply our label-free workflow to identify novel xenobiotic-protein adducts in CYP3A4. Our new methods and software enable accurate identification of xenobiotic-protein adducts with no prior knowledge of adduct masses or protein targets. Magnum outperforms existing label-free tools in xenobiotic-protein adduct discovery, while Limelight fulfills a major need in the rapidly developing field of open-mass searching, which until now lacked comprehensive data visualization tools.


Assuntos
Proteínas , Proteômica , Algoritmos , Adutos de DNA , Espectrometria de Massas/métodos , Proteínas/análise , Proteômica/métodos , Software
12.
mBio ; 12(6): e0257521, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724830

RESUMO

Gametocytes of the malaria parasite Plasmodium are taken up by the mosquito vector with an infectious blood meal, representing a critical stage for parasite transmission. Calcium-independent protein kinases (CDPKs) play key roles in calcium-mediated signaling across the complex life cycle of the parasite. We sought to understand their role in human parasite transmission from the host to the mosquito vector and thus investigated the role of the human-infective parasite Plasmodium falciparum CDPK4 in the parasite life cycle. P. falciparum cdpk4- parasites created by targeted gene deletion showed no effect in blood stage development or gametocyte development. However, cdpk4- parasites showed a severe defect in male gametogenesis and the emergence of flagellated male gametes. To understand the molecular underpinnings of this defect, we performed mass spectrometry-based phosphoproteomic analyses of wild-type and Plasmodium falciparum cdpk4- late gametocyte stages to identify key CDPK4-mediated phosphorylation events that may be important for the regulation of male gametogenesis. We further employed in vitro assays to identify these putative substrates of Plasmodium falciparum CDPK4. This indicated that CDPK4 regulates male gametogenesis by directly or indirectly controlling key essential events, such as DNA replication, mRNA translation, and cell motility. Taken together, our work demonstrates that PfCDPK4 is a central kinase that regulates exflagellation and thereby is critical for parasite transmission to the mosquito vector. IMPORTANCE Transmission of the malaria parasite to the mosquito vector is critical for the completion of the sexual stage of the parasite life cycle and is dependent on the release of male gametes from the gametocyte body inside the mosquito midgut. In the present study, we demonstrate that PfCDPK4 is critical for male gametogenesis and is involved in phosphorylation of proteins essential for male gamete emergence. Targeting PfCDPK4 and its substrates may provide insights into achieving effective malaria transmission-blocking strategies.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Gametogênese/fisiologia , Mosquitos Vetores , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Animais , Sinalização do Cálcio , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Culicidae , Gametogênese/genética , Células Germinativas/metabolismo , Estágios do Ciclo de Vida , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Fosforilação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
13.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1119-L1130, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668408

RESUMO

Identifying protein biomarkers for chronic obstructive pulmonary disease (COPD) has been challenging. Most previous studies have used individual proteins or preselected protein panels measured in blood samples. Mass spectrometry proteomic studies of lung tissue have been based on small sample sizes. We used mass spectrometry proteomic approaches to discover protein biomarkers from 150 lung tissue samples representing COPD cases and controls. Top COPD-associated proteins were identified based on multiple linear regression analysis with false discovery rate (FDR) < 0.05. Correlations between pairs of COPD-associated proteins were examined. Machine learning models were also evaluated to identify potential combinations of protein biomarkers related to COPD. We identified 4,407 proteins passing quality controls. Twenty-five proteins were significantly associated with COPD at FDR < 0.05, including interleukin 33, ferritin (light chain and heavy chain), and two proteins related to caveolae (CAV1 and CAVIN1). Multiple previously reported plasma protein biomarkers for COPD were not significantly associated with proteomic analysis of COPD in lung tissue, although RAGE was borderline significant. Eleven pairs of top significant proteins were highly correlated (r > 0.8), including several strongly correlated with RAGE (EHD2 and CAVIN1). Machine learning models using Random Forests with the top 5% of protein biomarkers demonstrated reasonable accuracy (0.707) and area under the curve (0.714) for COPD prediction. Mass spectrometry-based proteomic analysis of lung tissue is a promising approach for the identification of biomarkers for COPD.


Assuntos
Biomarcadores/metabolismo , Pulmão/metabolismo , Espectrometria de Massas/métodos , Proteoma/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma/análise , Doença Pulmonar Obstrutiva Crônica/metabolismo
14.
Curr Biol ; 31(23): 5149-5162.e6, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34648730

RESUMO

We subjected human paleofeces dating from the Bronze Age to the Baroque period (18th century AD) to in-depth microscopic, metagenomic, and proteomic analyses. The paleofeces were preserved in the underground salt mines of the UNESCO World Heritage site of Hallstatt in Austria. This allowed us to reconstruct the diet of the former population and gain insights into their ancient gut microbiome composition. Our dietary survey identified bran and glumes of different cereals as some of the most prevalent plant fragments. This highly fibrous, carbohydrate-rich diet was supplemented with proteins from broad beans and occasionally with fruits, nuts, or animal food products. Due to these traditional dietary habits, all ancient miners up to the Baroque period have gut microbiome structures akin to modern non-Westernized individuals whose diets are also mainly composed of unprocessed foods and fresh fruits and vegetables. This may indicate a shift in the gut community composition of modern Westernized populations due to quite recent dietary and lifestyle changes. When we extended our microbial survey to fungi present in the paleofeces, in one of the Iron Age samples, we observed a high abundance of Penicillium roqueforti and Saccharomyces cerevisiae DNA. Genome-wide analysis indicates that both fungi were involved in food fermentation and provides the first molecular evidence for blue cheese and beer consumption in Iron Age Europe.


Assuntos
Queijo , Microbioma Gastrointestinal , Animais , Cerveja , Dieta , Fungos , Proteômica
16.
PLoS Pathog ; 17(2): e1009293, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534803

RESUMO

Malaria remains a major global health problem, creating a constant need for research to identify druggable weaknesses in P. falciparum biology. As important components of cellular redox biology, members of the Thioredoxin (Trx) superfamily of proteins have received interest as potential drug targets in Apicomplexans. However, the function and essentiality of endoplasmic reticulum (ER)-localized Trx-domain proteins within P. falciparum has not been investigated. We generated conditional mutants of the protein PfJ2-an ER chaperone and member of the Trx superfamily-and show that it is essential for asexual parasite survival. Using a crosslinker specific for redox-active cysteines, we identified PfJ2 substrates as PfPDI8 and PfPDI11, both members of the Trx superfamily as well, which suggests a redox-regulatory role for PfJ2. Knockdown of these PDIs in PfJ2 conditional mutants show that PfPDI11 may not be essential. However, PfPDI8 is required for asexual growth and our data suggest it may work in a complex with PfJ2 and other ER chaperones. Finally, we show that the redox interactions between these Trx-domain proteins in the parasite ER and their substrates are sensitive to small molecule inhibition. Together these data build a model for how Trx-domain proteins in the P. falciparum ER work together to assist protein folding and demonstrate the suitability of ER-localized Trx-domain proteins for antimalarial drug development.


Assuntos
Retículo Endoplasmático/parasitologia , Proteínas de Choque Térmico HSP40/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Tiorredoxina Redutase 2/metabolismo , Antimaláricos/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/genética , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Chaperonas Moleculares , Oxirredução , Estresse Oxidativo , Dobramento de Proteína , Proteínas de Protozoários/genética , Tiorredoxina Redutase 2/genética
17.
J Proteome Res ; 20(4): 1911-1917, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529024

RESUMO

The efficiency of shotgun proteomic analysis is dependent on the reproducibility of the peptide cleavage process during sample preparation. To generate rapid and useful metrics for peptide cleavage efficiency, as in enzymatic or chemical cleavage, SPACEPro was developed to evaluate efficiency and reproducibility of protein cleavage in peptide samples following data-dependent analysis by mass spectrometry. SPACEPro analyzes samples at the peptide-spectrum match (PSM), peptide, and protein levels to provide a comprehensive representation of the overall sample processing to peptides. All output is provided in human-readable text and JSON files that can be further processed to assess the cleavage efficiency on proteins within the sample. SPACEPro provides a snapshot of the protein cleavage efficiency through very minimal effort so that the user is informed of the quality of the sample processing efficiency and can accordingly develop protocols to improve the initial sample preparation for subsequent analyses.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Humanos , Reprodutibilidade dos Testes , Software , Tripsina
18.
Nat Microbiol ; 6(1): 123-135, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139880

RESUMO

Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We analysed generation-resolved iMGE-host dynamics spanning one and a half years in a microbial consortium from a biological wastewater treatment plant using integrated meta-omics. We identified 31 bacterial metagenome-assembled genomes encoding complete CRISPR-Cas systems and their corresponding iMGEs. CRISPR-targeted plasmids outnumbered their bacteriophage counterparts by at least fivefold, highlighting the importance of CRISPR-mediated defence against plasmids. Linear modelling of our time-series data revealed that the variation in plasmid abundance over time explained more of the observed community dynamics than phages. Community-scale CRISPR-based plasmid-host and phage-host interaction networks revealed an increase in CRISPR-mediated interactions coinciding with a decrease in the dominant 'Candidatus Microthrix parvicella' population. Protospacers were enriched in sequences targeting genes involved in the transmission of iMGEs. Understanding the factors shaping the fitness of specific populations is necessary to devise control strategies for undesirable species and to predict or explain community-wide phenotypes.


Assuntos
Bactérias/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Interações Microbianas/genética , Plasmídeos/genética , Bactérias/virologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Bacteriano/genética , Metagenoma/genética , Consórcios Microbianos/genética , Interações Microbianas/fisiologia , Esgotos/microbiologia , Purificação da Água
19.
J Proteome Res ; 19(12): 4754-4765, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33166149

RESUMO

Mass spectrometry has greatly improved the analysis of phosphorylation events in complex biological systems and on a large scale. Despite considerable progress, the correct identification of phosphorylated sites, their quantification, and their interpretation regarding physiological relevance remain challenging. The MS Resource Pillar of the Human Proteome Organization (HUPO) Human Proteome Project (HPP) initiated the Phosphopeptide Challenge as a resource to help the community evaluate methods, learn procedures and data analysis routines, and establish their own workflows by comparing results obtained from a standard set of 94 phosphopeptides (serine, threonine, tyrosine) and their nonphosphorylated counterparts mixed at different ratios in a neat sample and a yeast background. Participants analyzed both samples with their method(s) of choice to report the identification and site localization of these peptides, determine their relative abundances, and enrich for the phosphorylated peptides in the yeast background. We discuss the results from 22 laboratories that used a range of different methods, instruments, and analysis software. We reanalyzed submitted data with a single software pipeline and highlight the successes and challenges in correct phosphosite localization. All of the data from this collaborative endeavor are shared as a resource to encourage the development of even better methods and tools for diverse phosphoproteomic applications. All submitted data and search results were uploaded to MassIVE (https://massive.ucsd.edu/) as data set MSV000085932 with ProteomeXchange identifier PXD020801.


Assuntos
Fosfopeptídeos , Proteoma , Humanos , Espectrometria de Massas , Fosforilação , Proteômica
20.
Structure ; 28(11): 1259-1268, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33065067

RESUMO

Cross-linking mass spectrometry (MS) has substantially matured as a method over the past 2 decades through parallel development in multiple labs, demonstrating its applicability to protein structure determination, conformation analysis, and mapping protein interactions in complex mixtures. Cross-linking MS has become a much-appreciated and routinely applied tool, especially in structural biology. Therefore, it is timely that the community commits to the development of methodological and reporting standards. This white paper builds on an open process comprising a number of events at community conferences since 2015 and identifies aspects of Cross-linking MS for which guidelines should be developed as part of a Cross-linking MS standards initiative.


Assuntos
Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Proteínas/ultraestrutura , Proteômica/métodos , Guias como Assunto , Humanos , Cooperação Internacional , Espectrometria de Massas/instrumentação , Espectrometria de Massas/normas , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteômica/instrumentação , Proteômica/normas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...