Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Front Microbiol ; 13: 988725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160186

RESUMO

The rise in antimicrobial resistance (AMR), and increase in treatment-refractory AMR infections, generates an urgent need to accelerate the discovery and development of novel anti-infectives. Preclinical animal models play a crucial role in assessing the efficacy of novel drugs, informing human dosing regimens and progressing drug candidates into the clinic. The Innovative Medicines Initiative-funded "Collaboration for prevention and treatment of MDR bacterial infections" (COMBINE) consortium is establishing a validated and globally harmonized preclinical model to increase reproducibility and more reliably translate results from animals to humans. Toward this goal, in April 2021, COMBINE organized the expert workshop "Advancing toward a standardized murine model to evaluate treatments for AMR lung infections". This workshop explored the conduct and interpretation of mouse infection models, with presentations on PK/PD and efficacy studies of small molecule antibiotics, combination treatments (ß-lactam/ß-lactamase inhibitor), bacteriophage therapy, monoclonal antibodies and iron sequestering molecules, with a focus on the major Gram-negative AMR respiratory pathogens Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Here we summarize the factors of variability that we identified in murine lung infection models used for antimicrobial efficacy testing, as well as the workshop presentations, panel discussions and the survey results for the harmonization of key experimental parameters. The resulting recommendations for standard design parameters are presented in this document and will provide the basis for the development of a harmonized and bench-marked efficacy studies in preclinical murine pneumonia model.

2.
Front Microbiol ; 13: 988728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160241

RESUMO

Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of in vivo models that mimic clinical infection, translational challenges remain high. Standardization of in vivo models is deemed necessary to improve the robustness and reproducibility of preclinical studies and thus translational research. The European Innovative Medicines Initiative (IMI)-funded "Collaboration for prevention and treatment of MDR bacterial infections" (COMBINE) consortium, aims to develop a standardized, quality-controlled murine pneumonia model for preclinical efficacy testing of novel anti-infective candidates and to improve tools for the translation of preclinical data to the clinic. In this review of murine pneumonia model data published in the last 10 years, we present our findings of considerable variability in the protocols employed for testing the efficacy of antimicrobial compounds using this in vivo model. Based on specific inclusion criteria, fifty-three studies focusing on antimicrobial assessment against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail. The data revealed marked differences in the experimental design of the murine pneumonia models employed in the literature. Notably, several differences were observed in variables that are expected to impact the obtained results, such as the immune status of the animals, the age, infection route and sample processing, highlighting the necessity of a standardized model.

3.
J Control Release ; 352: 199-210, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36084816

RESUMO

Liposomes are promising targeted drug delivery systems with the potential to improve the efficacy and safety profile of certain classes of drugs. Though attractive, there are unique analytical challenges associated with the development of liposomal drugs including human dose prediction given these are multi-component drug delivery systems. In this study, we developed a multimodal imaging approach to provide a comprehensive distribution assessment for an antibacterial drug, GSK2485680, delivered as a liposomal formulation (Lipo680) in a mouse thigh model of bacterial infection to support human dose prediction. Positron emission tomography (PET) imaging was used to track the in vivo biodistribution of Lipo680 over 48 h post-injection providing a clear assessment of the uptake in various tissues and, importantly, the selective accumulation at the site of infection. In addition, a pharmacokinetic model was created to evaluate the kinetics of Lipo680 in different tissues. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was then used to quantify the distribution of GSK2485680 and to qualitatively assess the distribution of a liposomal lipid throughout sections of infected and non-infected hindlimb tissues at high spatial resolution. Through the combination of both PET and MALDI IMS, we observed excellent correlation between the Lipo680-radionuclide signal detected by PET with the GSK2485680 and lipid component signals detected by MALDI IMS. This multimodal translational method can reduce drug attrition by generating comprehensive biodistribution profiles of drug delivery systems to provide mechanistic insight and elucidate safety concerns. Liposomal formulations have potential to deliver therapeutics across a broad array of different indications, and this work serves as a template to aid in delivering future liposomal drugs to the clinic.


Assuntos
Doenças Transmissíveis , Lipossomos , Animais , Camundongos , Humanos , Lipossomos/química , Distribuição Tecidual , Antibacterianos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tomografia por Emissão de Pósitrons , Imagem Multimodal , Lipídeos
4.
Antimicrob Agents Chemother ; 66(3): e0149221, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34978887

RESUMO

Antibiotics are the current standard-of-care treatment for uncomplicated urinary tract infections (uUTIs). However, increasing rates of bacterial antibiotic resistance necessitate novel therapeutic options. Gepotidacin is a first-in-class triazaacenaphthylene antibiotic that selectively inhibits bacterial DNA replication by interaction with the bacterial subunits of DNA gyrase (GyrA) and topoisomerase IV (ParC). Gepotidacin is currently in clinical development for the treatment of uUTIs and other infections. In this article, we review data for gepotidacin from nonclinical studies, including in vitro activity, in vivo animal efficacy, and pharmacokinetic (PK) and pharmacokinetic/pharmacodynamic (PK/PD) models that informed dose selection for phase III clinical evaluation of gepotidacin. Based on this translational package of data, a gepotidacin 1,500-mg oral dose twice daily for 5 days was selected for two ongoing, randomized, multicenter, parallel-group, double-blind, double-dummy, active-comparator phase III clinical studies evaluating the safety and efficacy of gepotidacin in adolescent and adult female participants with uUTIs (ClinicalTrials.gov identifiers NCT04020341 and NCT04187144).


Assuntos
Acenaftenos , Infecções Urinárias , Acenaftenos/farmacologia , Adolescente , Animais , Antibacterianos/farmacologia , Ensaios Clínicos Fase III como Assunto , Feminino , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Infecções Urinárias/tratamento farmacológico
5.
Elife ; 102021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34269678

RESUMO

G protein-coupled receptors (GPCRs) have long been shown to exist as oligomers with functional properties distinct from those of the monomeric counterparts, but the driving factors of oligomerization remain relatively unexplored. Herein, we focus on the human adenosine A2A receptor (A2AR), a model GPCR that forms oligomers both in vitro and in vivo. Combining experimental and computational approaches, we discover that the intrinsically disordered C-terminus of A2AR drives receptor homo-oligomerization. The formation of A2AR oligomers declines progressively with the shortening of the C-terminus. Multiple interaction types are responsible for A2AR oligomerization, including disulfide linkages, hydrogen bonds, electrostatic interactions, and hydrophobic interactions. These interactions are enhanced by depletion interactions, giving rise to a tunable network of bonds that allow A2AR oligomers to adopt multiple interfaces. This study uncovers the disordered C-terminus as a prominent driving factor for the oligomerization of a GPCR, offering important insight into the effect of C-terminus modification on receptor oligomerization of A2AR and other GPCRs reconstituted in vitro for biophysical studies.


Assuntos
Adenosina/metabolismo , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/genética , Escherichia coli , Expressão Gênica , Humanos , Conformação Proteica , Receptor A2A de Adenosina/metabolismo
6.
Appl Biosaf ; 26(1): 23-32, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36033961

RESUMO

Introduction: Failure of an existing effluent decontamination system (EDS) prompted the consideration of commercial off-the-shelf solutions for decontamination of containment laboratory waste. A bleach-based chemical EDS was purchased to serve as an interim solution. Methods: Studies were conducted in the laboratory to validate inactivation of Bacillus spores with bleach in complex matrices containing organic simulants including fetal bovine serum, humic acid, and animal room sanitation effluent. Results: These studies demonstrated effective decontamination of >106 spores at a free chlorine concentration of ≥5700 parts per million with a 2-hour contact time. Translation of these results to biological validation of the bleach-based chemical EDS required some modifications to the system and its operation. Discussion: The chemical EDS was validated for the treatment of biosafety levels 3 and 4 waste effluent using laboratory-prepared spore packets along with commercial biological indicators; however, several issues and lessons learned identified during the process of onboarding are also discussed, including bleach product source, method of validation, dechlorination, and treated waste disposal.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31061153

RESUMO

Gepotidacin is a first-in-class triazaacenaphthylene antibacterial that inhibits bacterial type II topoisomerases and has in vitro activity against a range of bacterial pathogens, including Escherichia coli Urinary tract infections often progress to pyelonephritis and are a worldwide problem due to the prevalence of multidrug-resistant E. coli strains. This study evaluated the in vivo efficacy of gepotidacin against four strains of multidrug-resistant E. coli in a rat pyelonephritis model. Infected rats received controlled intravenous infusions of gepotidacin every 12 h for 4 days that recreated human systemic exposures from oral gepotidacin (800 or 1,500 mg twice daily for 4 days). Liquid chromatography-tandem mass spectrometry analysis of blood samples and kidney homogenates showed that gepotidacin levels were 6- to 7-fold higher in kidneys than in blood. Across experiments with 4-day gepotidacin treatments, bacterial CFU in kidneys were reduced by 2.9 to 4.9 log10 compared to pretreatment levels, and bladder CFU were reduced to the lower limit of detection (1.2 log10). The efficacies of 800- and 1,500-mg gepotidacin exposures were statistically similar. A time-course experiment indicated that a period of more than 24 h of gepotidacin treatment was required for efficacy and that 4 days were needed for maximal response. Overall, these results demonstrate that the recreated human exposures of gepotidacin studied were effective in an animal model of pyelonephritis caused by multidrug-resistant E. coli and that further evaluation for clinical use is warranted.


Assuntos
Acenaftenos/uso terapêutico , Antibacterianos/uso terapêutico , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Pielonefrite/tratamento farmacológico , Animais , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Testes de Sensibilidade Microbiana , Pielonefrite/microbiologia , Ratos , Ratos Sprague-Dawley
8.
Artigo em Inglês | MEDLINE | ID: mdl-30833428

RESUMO

In June 2017, the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, organized a workshop entitled "Pharmacokinetics-Pharmacodynamics (PK/PD) for Development of Therapeutics against Bacterial Pathogens." The aims were to discuss details of various PK/PD models and identify sound practices for deriving and utilizing PK/PD relationships to design optimal dosage regimens for patients. Workshop participants encompassed individuals from academia, industry, and government, including the United States Food and Drug Administration. This and the accompanying review on clinical PK/PD summarize the workshop discussions and recommendations. Nonclinical PK/PD models play a critical role in designing human dosage regimens and are essential tools for drug development. These include in vitro and in vivo efficacy models that provide valuable and complementary information for dose selection and translation from the laboratory to human. It is crucial that studies be designed, conducted, and interpreted appropriately. For antibacterial PK/PD, extensive published data and expertise are available. These have been leveraged to develop recommendations, identify common pitfalls, and describe the applications, strengths, and limitations of various nonclinical infection models and translational approaches. Despite these robust tools and published guidance, characterizing nonclinical PK/PD relationships may not be straightforward, especially for a new drug or new class. Antimicrobial PK/PD is an evolving discipline that needs to adapt to future research and development needs. Open communication between academia, pharmaceutical industry, government, and regulatory bodies is essential to share perspectives and collectively solve future challenges.


Assuntos
Antibacterianos/farmacocinética , Animais , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/metabolismo , Humanos , Camundongos
9.
Structure ; 27(2): 268-280.e6, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30554842

RESUMO

Research efforts to discover potential new antibiotics for Gram-negative bacteria suffer from high attrition rates due to the synergistic action of efflux systems and the limited permeability of the outer membrane (OM). One strategy to overcome the OM permeability barrier is to identify small molecules that are natural substrates for abundant OM channels and use such compounds as scaffolds for the design of efficiently permeating antibacterials. Here we present a multidisciplinary approach to identify such potential small-molecule scaffolds. Focusing on the pathogenic bacterium Acinetobacter baumannii, we use OM proteomics to identify DcaP as the most abundant channel during infection in rodents. The X-ray crystal structure of DcaP reveals a trimeric, porin-like structure and suggests that dicarboxylic acids are potential transport substrates. Electrophysiological experiments and all-atom molecular dynamics simulations confirm this notion and provide atomistic information on likely permeation pathways and energy barriers for several small molecules, including a clinically relevant ß-lactamase inhibitor.


Assuntos
Infecções por Acinetobacter/metabolismo , Acinetobacter baumannii/metabolismo , Porinas/química , Porinas/metabolismo , Sulbactam/farmacologia , Inibidores de beta-Lactamases/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Animais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cristalografia por Raios X , Ácidos Dicarboxílicos/metabolismo , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica , Proteômica , Ratos
10.
J Grad Med Educ ; 9(4): 440-446, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28824755

RESUMO

BACKGROUND: Catholic hospitals operate under the Ethical and Religious Directives for Catholic Health Care Services, which for obstetrics and gynecology residents may create barriers to receiving adequate training in family planning. OBJECTIVE: We evaluated how training at a Catholic hospital affects trainees' subsequent provision of reproductive health services at secular institutions. METHODS: This qualitative study used semistructured interviews with recent obstetrics and gynecology graduates in generalist practice at secular institutions. We queried about their training experiences, perceived deficiencies, and current provision of family planning services. Three researchers independently coded transcripts, using grounded theory. RESULTS: We reached thematic saturation after 15 of 31 graduates (48%) from 7 Catholic hospital residencies participated in interviews between June 2014 and February 2015. Many participants reported a lack of awareness regarding limitations on this aspect of their training. All participants reported reproductive health care training deficiencies, and many explained that "elective" training required resident initiative to obtain. After graduation, participants reported dissatisfaction with training in family planning, delayed competency in this area, and a lack of ability to provide certain family planning procedures. All felt that Catholic programs should improve family planning training by providing routine, opt-out family planning opportunities. CONCLUSIONS: Obstetricians and gynecologists who trained at Catholic institutions felt that religion-based policies negatively affected their training experiences and the range of reproductive health services they subsequently provide in practice. Forming collaborations with off-site facilities, particularly for postpartum tubal ligation and uterine evacuation, may improve the reproductive care these physicians ultimately provide to women.


Assuntos
Aborto Induzido , Serviços de Planejamento Familiar , Ginecologia/educação , Hospitais Religiosos , Internato e Residência , Obstetrícia/educação , Política Organizacional , Feminino , Humanos , Gravidez , Religião e Medicina
11.
Artigo em Inglês | MEDLINE | ID: mdl-28807913

RESUMO

Directly testing proposed clinical dosing regimens in nonclinical studies can reduce the risk during the development of novel antibacterial agents. Optimal dosing regimens can be identified in animal models by testing recreated human pharmacokinetic profiles. An example of this approach using continuous intravenous infusions of GSK1322322 in immunocompetent rats to evaluate recreated human exposures from phase I trials in pneumonia models with Streptococcus pneumoniae and Haemophilus influenzae and an abscess model with Staphylococcus aureus is presented. GSK1322322 was administered via continuous intravenous infusion to recreate 1,000- or 1,500-mg oral doses every 12 h in humans. Significant reductions (P ≤ 0.05 for all comparisons) in bacterial numbers compared with those for the baseline controls were observed for S. pneumoniae and H. influenzae (mean log10 reductions, 1.6 to ≥2.7 and 1.8 to 3.3 CFU/lungs, respectively) with the recreated 1,000-mg oral dose. This profile was also efficacious against S. aureus (mean log10 reduction, 1.9 to 2.4 CFU/abscess). There was a nonsignificant trend for improved efficacy against S. aureus with the 1,500-mg oral dose (mean log10 reduction, 2.4 to 3.1 CFU/abscess). These results demonstrate that the human oral 1,000- or 1,500-mg exposure profiles of GSK1322322 recreated in rats were effective against representative community-associated pathogens and supported selection of the 1,500-mg oral dose given every 12 h for a phase II clinical skin infection study. Furthermore, this work exemplifies how the testing of recreated human pharmacokinetic profiles can be incorporated into the development process and serve as an aid for selecting optimal dosing regimens prior to conducting large-scale clinical studies.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Haemophilus influenzae/efeitos dos fármacos , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/uso terapêutico , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/farmacocinética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Modelos Animais de Doenças , Esquema de Medicação , Infecções por Haemophilus/tratamento farmacológico , Humanos , Ácidos Hidroxâmicos/farmacocinética , Masculino , Testes de Sensibilidade Microbiana , Infecções Pneumocócicas/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Infecções Estafilocócicas/tratamento farmacológico
12.
Artigo em Inglês | MEDLINE | ID: mdl-28630178

RESUMO

Cefiderocol (S-649266), a novel siderophore cephalosporin, shows potent activity against carbapenem-resistant Gram-negative bacilli. In this study, we evaluated the efficacy of cefiderocol against carbapenem-resistant Gram-negative bacilli (Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae) in immunocompetent-rat respiratory tract infection models recreating plasma pharmacokinetics (PK) profiles in healthy human subjects. A total of 6 clinical isolates (1 cephalosporin-susceptible P. aeruginosa isolate, 1 multidrug-resistant P. aeruginosa isolate, 2 multidrug-resistant A. baumannii isolates, and 2 carbapenem-resistant K. pneumoniae isolates) were evaluated. Four-day treatment with a human exposure of 1 g ceftazidime every 8 h as a 0.5-h infusion showed potent efficacy only against a ceftazidime-susceptible isolate, not against five ceftazidime-resistant isolates harboring carbapenemase. With cefiderocol, a human exposure of 2 g every 8 h as a 3-h infusion for 4 days produced a >3 log10 reduction in the number of viable cells of these carbapenem-resistant isolates in the lungs. When the infusion time was 1 h, bactericidal activity was also observed against all isolates tested, although for 2 of 5 carbapenem-resistant isolates, a 3 log10 reduction was not achieved. The difference in efficacy achieved by changing the infusion period from 1 h to 3 h was considered to be due to the higher percentage of the dosing interval during which free-drug concentrations were above the MIC (%fTMIC), as observed for ß-lactam antibiotics. These results suggest the potential utility of cefiderocol for the treatment of lung infections caused by carbapenem-resistant P. aeruginosa, A. baumannii, and K. pneumoniae strains.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Antibacterianos/sangue , Antibacterianos/uso terapêutico , Cefalosporinas/farmacocinética , Cefalosporinas/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Masculino , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Infecções Respiratórias/microbiologia , Resistência beta-Lactâmica/genética , Cefiderocol
13.
J Vis Exp ; (119)2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28117818

RESUMO

Efficacy of candidate antibacterial treatments must be demonstrated in animal models of infection as part of the discovery and development process, preferably in models which mimic the intended clinical indication. A method for inducing robust lung infections in immunocompetent rats and mice is described which allows for the assessment of treatments in a model of serious pneumonia caused by S. pneumoniae, H. influenzae, P. aeruginosa, K. pneumoniae or A. baumannii. Animals are anesthetized, and an agar-based inoculum is deposited deep into the lung via nonsurgical intratracheal intubation. The resulting infection is consistent, reproducible, and stable for at least 48 h and up to 96 h for most isolates. Studies with marketed antibacterials have demonstrated good correlation between in vivo efficacy and in vitro susceptibility, and concordance between pharmacokinetic/pharmacodynamic targets determined in this model and clinically accepted targets has been observed. Although there is an initial time investment when learning the technique, it can be performed quickly and efficiently once proficiency is achieved. Benefits of the model include elimination of the neutropenic requirement, increased robustness and reproducibility, ability to study more pathogens and isolates, improved flexibility in study design and establishment of a challenging infection in an immunocompetent host.


Assuntos
Antibacterianos/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/patogenicidade , Animais , Modelos Animais de Doenças , Infecções por Haemophilus/tratamento farmacológico , Haemophilus influenzae/patogenicidade , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/patogenicidade , Masculino , Camundongos , Pneumonia Bacteriana/microbiologia , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Streptococcus pneumoniae/patogenicidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-27872075

RESUMO

Gepotidacin (formerly called GSK2140944) is a novel triazaacenaphthylene bacterial topoisomerase inhibitor with in vitro activity against conventional and biothreat pathogens, including Staphylococcus aureus and Streptococcus pneumoniae Using neutropenic murine thigh and lung infection models, the pharmacokinetics-pharmacodynamics (PK-PD) of gepotidacin against S. aureus and S. pneumoniae were characterized. Candidate models were fit to single-dose PK data from uninfected mice (for doses of 16 to 128 mg/kg of body weight given subcutaneously [s.c.]). Dose fractionation studies (1 isolate/organism; 2 to 512 mg/kg/day) and dose-ranging studies (5 isolates/organism; 2 to 2,048 mg/kg/day; MIC ranges of 0.5 to 2 mg/liter for S. aureus and 0.125 to 1 mg/liter for S. pneumoniae) were conducted. The presence of an in vivo postantibiotic effect (PAE) was also evaluated. Relationships between the change from baseline in log10 CFU at 24 h and the ratio of the free-drug plasma area under the concentration-time curve (AUC) to the MIC (AUC/MIC ratio), the ratio of the maximum concentration of drug in plasma (Cmax) to the MIC (Cmax/MIC ratio), and the percentage of a 24-h period that the drug concentration exceeded the MIC (%T>MIC) were evaluated using Hill-type models. Plasma and epithelial lining fluid (ELF) PK data were best fit by a four-compartment model with linear distributional clearances, a capacity-limited clearance, and a first-order absorption rate. The ELF penetration ratio in uninfected mice was 0.65. Since the growth of both organisms was poor in the murine lung infection model, lung efficacy data were not reported. As determined using the murine thigh infection model, the free-drug plasma AUC/MIC ratio was the PK-PD index most closely associated with efficacy (r2 = 0.936 and 0.897 for S. aureus and S. pneumoniae, respectively). Median free-drug plasma AUC/MIC ratios of 13.4 and 58.9 for S. aureus, and 7.86 and 16.9 for S. pneumoniae, were associated with net bacterial stasis and a 1-log10 CFU reduction from baseline, respectively. Dose-independent PAE durations of 3.07 to 12.5 h and 5.25 to 8.46 h were demonstrated for S. aureus and S. pneumoniae, respectively.


Assuntos
Acenaftenos/farmacocinética , Antibacterianos/farmacocinética , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Infecções Pneumocócicas/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Acenaftenos/administração & dosagem , Animais , Antibacterianos/administração & dosagem , Área Sob a Curva , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Pneumonia Estafilocócica/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Coxa da Perna/microbiologia
15.
Bioorg Med Chem Lett ; 26(10): 2464-2469, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27055939
16.
Antimicrob Agents Chemother ; 60(1): 180-9, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26482300

RESUMO

GSK1322322 is a novel inhibitor of peptide deformylase (PDF) with good in vitro activity against bacteria associated with community-acquired pneumonia and skin infections. We have characterized the in vivo pharmacodynamics (PD) of GSK1322322 in immunocompetent animal models of infection with Streptococcus pneumoniae and Haemophilus influenzae (mouse lung model) and with Staphylococcus aureus (rat abscess model) and determined the pharmacokinetic (PK)/PD index that best correlates with efficacy and its magnitude. Oral PK studies with both models showed slightly higher-than-dose-proportional exposure, with 3-fold increases in area under the concentration-time curve (AUC) with doubling doses. GSK1322322 exhibited dose-dependent in vivo efficacy against multiple isolates of S. pneumoniae, H. influenzae, and S. aureus. Dose fractionation studies with two S. pneumoniae and S. aureus isolates showed that therapeutic outcome correlated best with the free AUC/MIC (fAUC/MIC) index in S. pneumoniae (R(2), 0.83), whereas fAUC/MIC and free maximum drug concentration (fCmax)/MIC were the best efficacy predictors for S. aureus (R(2), 0.9 and 0.91, respectively). Median daily fAUC/MIC values required for stasis and for a 1-log10 reduction in bacterial burden were 8.1 and 14.4 for 11 S. pneumoniae isolates (R(2), 0.62) and 7.2 and 13.0 for five H. influenzae isolates (R(2), 0.93). The data showed that for eight S. aureus isolates, fAUC correlated better with efficacy than fAUC/MIC (R(2), 0.91 and 0.76, respectively), as efficacious AUCs were similar for all isolates, independent of their GSK1322322 MIC (range, 0.5 to 4 µg/ml). Median fAUCs of 2.1 and 6.3 µg · h/ml were associated with stasis and 1-log10 reductions, respectively, for S. aureus.


Assuntos
Antibacterianos/farmacocinética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Inibidores Enzimáticos/farmacocinética , Infecções por Haemophilus/tratamento farmacológico , Ácidos Hidroxâmicos/farmacocinética , Pneumonia Pneumocócica/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Antibacterianos/sangue , Antibacterianos/farmacologia , Área Sob a Curva , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/sangue , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/farmacologia , Infecções por Haemophilus/sangue , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/enzimologia , Haemophilus influenzae/crescimento & desenvolvimento , Ácidos Hidroxâmicos/sangue , Ácidos Hidroxâmicos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Pneumonia Pneumocócica/sangue , Pneumonia Pneumocócica/microbiologia , Ratos , Ratos Sprague-Dawley , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/crescimento & desenvolvimento
17.
Bioorg Med Chem Lett ; 23(19): 5437-41, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23968823

RESUMO

During the course of our research to find novel mode of action antibacterials, we discovered a series of hydroxyl tricyclic compounds that showed good potency against Gram-positive and Gram-negative pathogens. These compounds inhibit bacterial type IIA topoisomerases. Herein we will discuss structure-activity relationships in this series and report advanced studies on compound 1 (GSK966587) which demonstrates good PK and in vivo efficacy properties. X-ray crystallographic studies were used to provide insight into the structural basis for the difference in antibacterial potency between enantiomers.


Assuntos
Bactérias/enzimologia , Naftiridinas/química , Naftiridinas/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Animais , Cristalografia por Raios X , Cães , Ativação Enzimática/efeitos dos fármacos , Haplorrinos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ratos
18.
Neurobiol Aging ; 33(4): 832.e1-14, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21907460

RESUMO

Aging increases the likelihood of cognitive decline after negative life events such as infection or injury. We have modeled this increased vulnerability in aged (24-month-old), but otherwise unimpaired F344xBN rats. In these animals, but not in younger (3-month-old) counterparts, a single intraperitoneal injection of E. coli leads to specific deficits in long-term memory and long-lasting synaptic plasticity in hippocampal area CA1-processes strongly dependent on brain-derived neurotrophic factor (BDNF). Here we have investigated the effects of age and infection on basal and fear-conditioning-stimulated expression of Bdnf in hippocampus. We performed in situ hybridization with 6 probes recognizing: total (pan-)BDNF mRNA, the 4 predominant 5' exon-specific transcripts (I, II, IV, and VI), and BDNF mRNAs with a long 3' untranslated region (3' UTR). In CA1, aging reduced basal levels and fear-conditioning-induced expression of total BDNF mRNA, exon IV-specific transcripts, and transcripts with long 3' UTRs; effects of infection were similar and sometimes compounded the effects of aging. In CA3, aging reduced all of the transcripts to some degree; infection had no effect. Effects in dentate were minimal. Northern blot analysis confirmed an aging-associated loss of total BDNF mRNA in areas CA1 and CA3, and revealed a parallel, preferential loss of BDNF mRNA transcripts with long 3' UTRs.


Assuntos
Envelhecimento/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Infecções por Escherichia coli/patologia , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , Fatores Etários , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Éxons/genética , Medo/psicologia , Masculino , Ratos , Ratos Endogâmicos F344
19.
Bioorg Med Chem Lett ; 21(24): 7489-95, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22047689
20.
Bioorg Med Chem Lett ; 21(24): 7483-8, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22030032

RESUMO

As part of our wider efforts to exploit novel mode of action antibacterials, we have discovered a series of cyclohexyl-amide compounds that has good Gram positive and Gram negative potency. The mechanism of action is via inhibition of bacterial topoisomerases II and IV. We have investigated various subunits in this series and report advanced studies on compound 7 which demonstrates good PK and in vivo efficacy properties.


Assuntos
Amidas/química , Antibacterianos/química , Antibacterianos/farmacologia , DNA Topoisomerases Tipo II/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Inibidores da Topoisomerase II/química , Amidas/síntese química , Amidas/farmacocinética , Animais , Antibacterianos/síntese química , Sítios de Ligação , Simulação por Computador , DNA Topoisomerases Tipo II/metabolismo , Cães , Haplorrinos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Terciária de Proteína , Ratos , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA