Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 425(1): 19-31, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23036859

RESUMO

The C-terminal 69 residues of the J-protein Zuo1 are sufficient to activate Pdr1, a transcription factor involved in both pleiotropic drug resistance and growth control. Little is understood about the pathway of activation by this primarily ribosome associated Hsp40 co-chaperone. Here, we report that only the C-terminal 13 residues of Zuo1 are required for activation of Pdr1, with hydrophobic residues being critical for activity. Two-hybrid interaction experiments suggest that the interaction between this 13-residue Zuo1 peptide and Pdr1 is direct, analogous to the activation of Pdr1 by xenobiotics. However, simply dissociation of Zuo1 from the ribosome is not sufficient for induction of Pdr1 transcriptional activity, as the C-terminal 86 residues of Zuo1 fold into an autoinhibitory left-handed four-helix bundle. Hydrophobic residues critical for interaction with Pdr1 are sequestered within the structure of this C-terminal domain (CTD), necessitating unfolding for activation. Thus, although expression of the CTD does not result in activation, alterations that destabilize the structure cause induction of pleiotropic drug resistance. These destabilizing alterations also result in dissociation of the full-length protein from the ribosome. Thus, our results are consistent with an activation pathway in which unfolding of Zuo1's C-terminal helical bundle domain results in ribosome dissociation followed by activation of Pdr1 via a direct interaction.


Assuntos
Proteínas de Ligação a DNA/genética , Chaperonas Moleculares/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/genética , Ativação Transcricional/genética , Sequência de Aminoácidos , Cicloeximida/farmacologia , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutação Puntual , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido
2.
J Biol Chem ; 285(2): 961-8, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19901025

RESUMO

Although the biogenesis of ribosomal subunits occurs predominantly in the nucleus, final remodeling steps take place in the cytosol. One cytosolic step has two components: 1) the removal of the maturation factor Arx1, which transits from the nucleus to the cytosol with the pre-60 S subunit, and 2) its subsequent transport back into the nucleus. Two cytosolic proteins, Rei1 and Jjj1, are required, but their individual contributions to this step are not understood. Here we report that Rei1 and Jjj1 directly interact. This interaction is mediated by a C-terminal segment of Jjj1 encompassing a region rich in charged residues, flanked by C(2)H(2)-type zinc fingers. Deletion of the charged region results in defects in 60 S subunit biogenesis in vivo. In addition, we report resolution of an apparent contradiction in the literature regarding the association of Arx1 with the pre-60 S subunit in the absence of Rei1. The association of Arx1 with ribosomes is sensitive to the concentration of magnesium ions when Rei1 is absent. At near physiological concentrations, Arx1 remains associated with the pre-60 S particle, as it does in the absence of Jjj1; at higher concentrations, Arx1 dissociates in the absence of Rei1 but not in the absence of Jjj1. As both Rei1 and Jjj1 are required for dissociation of Arx1 from the pre-60 S subunit, and the region of Jjj1 that mediates interaction with Rei1 is required in vivo for 60 S subunit biogenesis, our data support the idea that the primary role of both Rei1 and Jjj1 is the first step of the Arx1 removal/recycling process.


Assuntos
Citosol/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Choque Térmico HSP40/genética , Estrutura Terciária de Proteína/fisiologia , Subunidades Ribossômicas Maiores de Eucariotos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência/genética , Dedos de Zinco/fisiologia
3.
J Bacteriol ; 190(17): 5953-62, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18586940

RESUMO

Vibrio cholerae uses a variety of strategies for obtaining iron in its diverse environments. In this study we report the identification of a novel iron utilization protein in V. cholerae, VciB. The vciB gene and its linked gene, vciA, were isolated in a screen for V. cholerae genes that permitted growth of an Escherichia coli siderophore mutant in low-iron medium. The vciAB operon encodes a predicted TonB-dependent outer membrane receptor, VciA, and a putative inner membrane protein, VciB. VciB, but not VciA, was required for growth stimulation of E. coli and Shigella flexneri strains in low-iron medium. Consistent with these findings, TonB was not needed for VciB-mediated growth. No growth enhancement was seen when vciB was expressed in an E. coli or S. flexneri strain defective for the ferrous iron transporter Feo. Supplying the E. coli feo mutant with a plasmid encoding either E. coli or V. cholerae Feo, or the S. flexneri ferrous iron transport system Sit, restored VciB-mediated growth; however, no stimulation was seen when either of the ferric uptake systems V. cholerae Fbp and Haemophilus influenzae Hit was expressed. These data indicate that VciB functions by promoting iron uptake via a ferrous, but not ferric, iron transport system. VciB-dependent iron accumulation via Feo was demonstrated directly in iron transport assays using radiolabeled iron. A V. cholerae vciB mutant did not exhibit any growth defects in either in vitro or in vivo assays, possibly due to the presence of other systems with overlapping functions in this pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Ferro/farmacocinética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Óperon/genética , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...