Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(2): e0211123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289138

RESUMO

Despite the significant presence of plant-derived tricarboxylic acids in some environments, few studies detail the bacterial metabolism of trans-aconitic acid (Taa) and tricarballylic acid (Tcb). In a soil bacterium, Acinetobacter baylyi ADP1, we discovered interrelated pathways for the consumption of Taa and Tcb. An intricate regulatory scheme tightly controls the transport and catabolism of both compounds and may reflect that they can be toxic inhibitors of the tricarboxylic acid cycle. The genes encoding two similar LysR-type transcriptional regulators, TcuR and TclR, were clustered on the chromosome with tcuA and tcuB, genes required for Tcb consumption. The genetic organization differed from that in Salmonella enterica serovar Typhimurium, in which tcuA and tcuB form an operon with a transporter gene, tcuC. In A. baylyi, tcuC was not cotranscribed with tcuAB. Rather, tcuC was cotranscribed with a gene, designated pacI, encoding an isomerase needed for Taa consumption. TcuC appears to transport Tcb and cis-aconitic acid (Caa), the presumed product of PacI-mediated periplasmic isomerization of Taa. Two operons, tcuC-pacI and tcuAB, were transcriptionally controlled by both TcuR and TclR, which have overlapping functions. We investigated the roles of the two regulators in activating transcription of both operons in response to multiple effector compounds, including Taa, Tcb, and Caa.IMPORTANCEIngestion of Taa and Tcb by grazing livestock can cause a serious metabolic disorder called grass tetany. The disorder, which results from Tcb absorption by ruminants, focuses attention on the metabolism of tricarboxylic acids. Additional interest stems from efforts to produce tricarboxylic acids as commodity chemicals. Improved understanding of bacterial enzymes and pathways for tricarboxylic acid metabolism may contribute to new biomanufacturing strategies.


Assuntos
Acinetobacter , Ácido Aconítico , Ácido Aconítico/metabolismo , Ácidos Tricarboxílicos/química , Ácidos Tricarboxílicos/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , Salmonella typhimurium/genética , Proteínas de Bactérias/metabolismo
2.
PLoS One ; 18(11): e0287514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37976320

RESUMO

Flagella-driven motility is essential for Helicobacter pylori to colonize the human stomach, where it causes a variety of diseases, including chronic gastritis, peptic ulcer disease, and gastric cancer. H. pylori has evolved a high-torque-generating flagellar motor that possesses several accessories not found in the archetypical Escherichia coli motor. FlgV was one of the first flagellar accessory proteins identified in Campylobacter jejuni, but its structure and function remain poorly understood. Here, we confirm that deletion of flgV in H. pylori B128 and a highly motile variant of H. pylori G27 (G27M) results in reduced motility in soft agar medium. Comparative analyses of in-situ flagellar motor structures of wild-type, ΔflgV, and a strain expressing FlgV-YFP showed that FlgV forms a ring-like structure closely associated with the junction of two highly conserved flagellar components: the MS and C rings. The results of our studies suggest that the FlgV ring has adapted specifically in Campylobacterota to support the assembly and efficient function of the high-torque-generating motors.


Assuntos
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Bactérias/química , Estômago , Meios de Cultura/metabolismo , Flagelos/metabolismo
3.
J Bacteriol ; 205(9): e0011023, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37655916

RESUMO

FlhF and FlhG control the location and number of flagella, respectively, in many polar-flagellated bacteria. The roles of FlhF and FlhG are not well characterized in bacteria that have multiple polar flagella, such as Helicobacter pylori. Deleting flhG in H. pylori shifted the flagellation pattern where most cells had approximately four flagella to a wider and more even distribution in flagellar number. As reported in other bacteria, deleting flhF in H. pylori resulted in reduced motility, hypoflagellation, and the improper localization of flagella to nonpolar sites. Motile variants of H. pylori ∆flhF mutants that had a higher proportion of flagella localizing correctly to the cell pole were isolated, but we were unable to identify the genetic determinants responsible for the increased localization of flagella to the cell pole. One motile variant though produced more flagella than the ΔflhF parental strain, which apparently resulted from a missense mutation in fliF (encodes the MS ring protein), which changed Asn-255 to aspartate. Recombinant FliFN255D, but not recombinant wild-type FliF, formed ordered ring-like assemblies in vitro that were ~50 nm wide and displayed the MS ring architecture. We infer from these findings that the FliFN225D variant forms the MS ring more effectively in vivo in the absence of FlhF than wild-type FliF. IMPORTANCE Helicobacter pylori colonizes the human stomach where it can cause a variety of diseases, including peptic ulcer disease and gastric cancer. H. pylori uses flagella for motility, which is required for host colonization. FlhG and FlhF control the flagellation patterns in many bacteria. We found that in H. pylori, FlhG ensures that cells have approximately equal number of flagella and FlhF is needed for flagellum assembly and localization. FlhF is proposed to facilitate the assembly of FliF into the MS ring, which is one of the earliest structures formed in flagellum assembly. We identified a FliF variant that assembles the MS ring in the absence of FlhF, which supports the proposed role of FlhF in facilitating MS ring assembly.


Assuntos
Helicobacter pylori , Proteínas Monoméricas de Ligação ao GTP , Humanos , Proteínas de Bactérias/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Flagelos/genética , Flagelos/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232924

RESUMO

Helicobacter pylori uses a cluster of polar, sheathed flagella for swimming motility. A search for homologs of H. pylori proteins that were conserved in Helicobacter species that possess flagellar sheaths but were underrepresented in Helicobacter species with unsheathed flagella identified several candidate proteins. Four of the identified proteins are predicted to form part of a tripartite efflux system that includes two transmembrane domains of an ABC transporter (HP1487 and HP1486), a periplasmic membrane fusion protein (HP1488), and a TolC-like outer membrane efflux protein (HP1489). Deleting hp1486/hp1487 and hp1489 homologs in H. pylori B128 resulted in reductions in motility and the number of flagella per cell. Cryo-electron tomography studies of intact motors of the Δhp1489 and Δhp1486/hp1487 mutants revealed many of the cells contained a potential flagellum disassembly product consisting of decorated L and P rings, which has been reported in other bacteria. Aberrant motors lacking specific components, including a cage-like structure that surrounds the motor, were also observed in the Δhp1489 mutant. These findings suggest a role for the H. pylori HP1486-HP1489 tripartite efflux system in flagellum stability. Three independent variants of the Δhp1486/hp1487 mutant with enhanced motility were isolated. All three motile variants had the same frameshift mutation in fliL, suggesting a role for FliL in flagellum disassembly.


Assuntos
Helicobacter pylori , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Helicobacter pylori/metabolismo , Proteínas de Fusão de Membrana/análise , Proteínas de Fusão de Membrana/metabolismo , Proteínas de Membrana/metabolismo
5.
Appl Environ Microbiol ; 88(15): e0088322, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862682

RESUMO

The regulated uptake and consumption of d-amino acids by bacteria remain largely unexplored, despite the physiological importance of these compounds. Unlike other characterized bacteria, such as Escherichia coli, which utilizes only l-Asp, Acinetobacter baylyi ADP1 can consume both d-Asp and l-Asp as the sole carbon or nitrogen source. As described here, two LysR-type transcriptional regulators (LTTRs), DarR and AalR, control d- and l-Asp metabolism in strain ADP1. Heterologous expression of A. baylyi proteins enabled E. coli to use d-Asp as the carbon source when either of two transporters (AspT or AspY) and a racemase (RacD) were coexpressed. A third transporter, designated AspS, was also discovered to transport Asp in ADP1. DarR and/or AalR controlled the transcription of aspT, aspY, racD, and aspA (which encodes aspartate ammonia lyase). Conserved residues in the N-terminal DNA-binding domains of both regulators likely enable them to recognize the same DNA consensus sequence (ATGC-N7-GCAT) in several operator-promoter regions. In strains lacking AalR, suppressor mutations revealed a role for the ClpAP protease in Asp metabolism. In the absence of the ClpA component of this protease, DarR can compensate for the loss of AalR. ADP1 consumed l- and d-Asn and l-Glu, but not d-Glu, as the sole carbon or nitrogen source using interrelated pathways. IMPORTANCE A regulatory scheme was revealed in which AalR responds to l-Asp and DarR responds to d-Asp, a molecule with critical signaling functions in many organisms. The RacD-mediated interconversion of these isomers causes overlap in transcriptional control in A. baylyi. Our studies improve understanding of transport and regulation and lay the foundation for determining how regulators distinguish l- and d-enantiomers. These studies are relevant for biotechnology applications, and they highlight the importance of d-amino acids as natural bacterial growth substrates.


Assuntos
Acinetobacter , Regulação Bacteriana da Expressão Gênica , Acinetobacter/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ácido D-Aspártico/genética , Ácido D-Aspártico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Nitrogênio/metabolismo , Peptídeo Hidrolases/metabolismo
6.
Microorganisms ; 9(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34946076

RESUMO

DNA methylomes of Helicobacter pylori strains are complex due to the large number of DNA methyltransferases (MTases) they possess. H. pylori J99 M.Hpy99III is a 5-methylcytosine (m5C) MTase that converts GCGC motifs to Gm5CGC. Homologs of M.Hpy99III are found in essentially all H. pylori strains. Most of these homologs are orphan MTases that lack a cognate restriction endonuclease, and their retention in H. pylori strains suggest they have roles in gene regulation. To address this hypothesis, green fluorescent protein (GFP) reporter genes were constructed with six putative promoters that had a GCGC motif in the extended -10 region, and the expression of the reporter genes was compared in wild-type H. pylori G27 and a mutant lacking the M.Hpy99III homolog (M.HpyGIII). The expression of three of the GFP reporter genes was decreased significantly in the mutant lacking M.HpyGIII. In addition, the growth rate of the H. pylori G27 mutant lacking M.HpyGIII was reduced markedly compared to that of the wild type. These findings suggest that the methylation of the GCGC motif in many H. pylori GCGC-containing promoters is required for the robust expression of genes controlled by these promoters, which may account for the universal retention of M.Hpy99III homologs in H. pylori strains.

7.
Biomolecules ; 10(3)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120823

RESUMO

A number of Gram-negative bacteria have a membrane surrounding their flagella, referred to as the flagellar sheath, which is continuous with the outer membrane. The flagellar sheath was initially described in Vibrio metschnikovii in the early 1950s as an extension of the outer cell wall layer that completely surrounded the flagellar filament. Subsequent studies identified other bacteria that possess flagellar sheaths, most of which are restricted to a few genera of the phylum Proteobacteria. Biochemical analysis of the flagellar sheaths from a few bacterial species revealed the presence of lipopolysaccharide, phospholipids, and outer membrane proteins in the sheath. Some proteins localize preferentially to the flagellar sheath, indicating mechanisms exist for protein partitioning to the sheath. Recent cryo-electron tomography studies have yielded high resolution images of the flagellar sheath and other structures closely associated with the sheath, which has generated insights and new hypotheses for how the flagellar sheath is synthesized. Various functions have been proposed for the flagellar sheath, including preventing disassociation of the flagellin subunits in the presence of gastric acid, avoiding activation of the host innate immune response by flagellin, activating the host immune response, adherence to host cells, and protecting the bacterium from bacteriophages.


Assuntos
Flagelos/genética , Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Filogenia , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/ultraestrutura , Flagelos/metabolismo , Flagelos/ultraestrutura , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/ultraestrutura , Humanos , Vibrio/genética , Vibrio/metabolismo , Vibrio/ultraestrutura
8.
J Bacteriol ; 201(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31427391

RESUMO

Helicobacter pylori uses a cluster of polar, sheathed flagella for motility, which it requires for colonization of the gastric epithelium in humans. As part of a study to identify factors that contribute to localization of the flagella to the cell pole, we disrupted a gene encoding a cardiolipin synthase (clsC) in H. pylori strains G27 and B128. Flagellum biosynthesis was abolished in the H. pylori G27 clsC mutant but not in the B128 clsC mutant. Transcriptome sequencing analysis showed that flagellar genes encoding proteins needed early in flagellum assembly were expressed at wild-type levels in the G27 clsC mutant. Examination of the G27 clsC mutant by cryo-electron tomography indicated the mutant assembled nascent flagella that contained the MS ring, C ring, flagellar protein export apparatus, and proximal rod. Motile variants of the G27 clsC mutant were isolated after allelic exchange mutagenesis using genomic DNA from the B128 clsC mutant as the donor. Genome resequencing of seven motile G27 clsC recipients revealed that each isolate contained the flgI (encodes the P-ring protein) allele from B128. Replacing the flgI allele in the G27 clsC mutant with the B128 flgI allele rescued flagellum biosynthesis. We postulate that H. pylori G27 FlgI fails to form the P ring when cardiolipin levels in the cell envelope are low, which blocks flagellum assembly at this point. In contrast, H. pylori B128 FlgI can form the P ring when cardiolipin levels are low and allows for the biosynthesis of mature flagella.IMPORTANCEH. pylori colonizes the epithelial layer of the human stomach, where it can cause a variety of diseases, including chronic gastritis, peptic ulcer disease, and gastric cancer. To colonize the stomach, H. pylori must penetrate the viscous mucous layer lining the stomach, which it accomplishes using its flagella. The significance of our research is identifying factors that affect the biosynthesis and assembly of the H. pylori flagellum, which will contribute to our understanding of motility in H. pylori, as well as other bacterial pathogens that use their flagella for host colonization.


Assuntos
Flagelos/genética , Helicobacter pylori/genética , Proteínas de Membrana/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Alelos , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Mutagênese/genética , Mutação/genética , Transcriptoma/genética
9.
Biochemistry ; 58(8): 1038-1042, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30699288

RESUMO

A newly discovered Fold III pyridoxal 5'-phosphate (PLP)-dependent decarboxylase, d-ornithine/lysine decarboxylase (DOKDC), catalyzes decarboxylation of d-lysine and d-ornithine with inversion of stereochemistry. The X-ray crystal structure of DOKDC has been determined to 1.72 Å. DOKDC has a low level of sequence identity (<30%) with meso-diaminopimelate decarboxylase (DAPDC) and l-lysine/ornithine decarboxylase (LODC), but its three-dimensional structure is very similar. The distal binding site of DAPDC contains a conserved arginine that forms an ion pair with the l-carboxylate end of DAP. In both LODC and DOKDC, this distal site is modified by replacement of the arginine with aspartate, changing the substrate specificity. l-Ornithine decarboxylase (ODC) and LODC have a conserved phenylalanine on the re-face of the PLP complex that has been found to play a key role in the decarboxylation mechanism. We have found that both DAPDC and DOKDC have tyrosine instead of phenylalanine at this position, which precludes the binding of l-amino acids. Because the PLP-binding lysine in ODC, LODC, DAPDC, and DOKDC is located on the re-face of the PLP, we propose that this is the acid group responsible for protonation of the product, thus resulting in the observed retention of configuration for decarboxylation of l-amino acids and inversion for decarboxylation of d-amino acids. The reactions of DAPDC and DOKDC are likely accelerated by positive electrostatics on the re-face by the lysine ε-ammonium ion and on the si-face by closure of the lid over the active site, resulting in desolvation and destabilization of the d-amino acid carboxylate.


Assuntos
Carboxiliases/química , Ornitina Descarboxilase/química , Conformação Proteica , Salmonella enterica/enzimologia , Carboxiliases/metabolismo , Cristalografia por Raios X , Descarboxilação , Modelos Moleculares , Ornitina Descarboxilase/metabolismo , Ligação Proteica , Estereoisomerismo , Especificidade por Substrato
10.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 799-805, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29277660

RESUMO

Salmonella enterica serovar Typhimurium utilizes a wide range of growth substrates, some of which are relatively novel. One of these unusual substrates is d-glucosaminate, which is metabolized by the enzymes encoded in the dga operon. d-Glucosaminate is transported and converted to d-glucosaminate-6-phosphate (G6P) by a phosphotransferase system, composed of DgaABCD. The protein product of dgaE, d-glucosaminate-6-phosphate ammonia lyase (DGL), converts G6P to 2-keto-3-deoxygluconate-6-phosphate, which undergoes a retroaldol reaction catalyzed by the DgaF protein to give d-glyceraldehyde-3-phosphate and pyruvate. We have now developed an improved synthesis of G6P which gives a higher yield. The DGL reaction is of mechanistic interest because it is one of only a few enzymes in the pyridoxal-5'-phosphate (PLP) dependent aminotransferase superfamily known to catalyze reaction of a d-amino acid substrate. The pH dependence of DGL shows an optimum at 7.5-8.5, suggesting a requirement for a catalytic base. α-Glycerophosphate and inorganic phosphate are weak competitive inhibitors, with Ki values near 30mM, and d-serine is neither a substrate nor an inhibitor. We have found in rapid-scanning stopped-flow experiments that DGL reacts rapidly with its substrate to form a quinonoid intermediate with λmax=480nm, within the dead time (ca. 2msec), which then rapidly decays (k=279s-1) to an intermediate with absorption between 330 and 350nm, probably an aminoacrylate complex. We suggest a mechanism for DGL and propose that the unusual stereochemistry of the DGL reaction requires a catalytic base poised on the opposite face of the PLP-substrate complex from the other members of the aminotransferase superfamily.


Assuntos
Glucosamina/análogos & derivados , Transaminases/metabolismo , Catálise , Glucosamina/metabolismo , Cinética , Estereoisomerismo , Especificidade por Substrato
11.
Arch Biochem Biophys ; 634: 83-87, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29024617

RESUMO

STM2360 is a gene located in a small operon of undetermined function in Salmonella enterica serovar Typhimurium LT2. The amino acid sequence of STM2360 shows significant similarity (∼30% identity) to diaminopimelate decarboxylase (DapDC), a Fold III pyridoxal-5'-phosphate (PLP) dependent enzyme involved in l-lysine biosynthesis. We have found that the protein coded by STM2360 has a previously undocumented catalytic activity, d-ornithine/d-lysine decarboxylase (DOKDC). The reaction products, cadaverine and putrescine, respectively, were identified by NMR and mass spectrometry. The substrate specificity of DOKDC is d-Lysine > d-Ornithine. This is the first pyridoxal-5'-phosphate dependent decarboxylase identified to act on d-amino acids. STM2358, located in the same operon, has ornithine racemase activity. This suggests that the physiological substrate of the decarboxylase and the operon is ornithine. Homologs of STM2360 with high sequence identity (>80%) are found in other common enterobacteria, including species of Klebsiella, Citrobacter, Vibrio and Hafnia, as well as Clostridium in the Firmicutes, and Pseudomonas.


Assuntos
Carboxiliases/genética , Carboxiliases/metabolismo , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Salmonella typhi/enzimologia , Salmonella typhi/genética , Regiões Promotoras Genéticas/genética
12.
Mol Microbiol ; 99(1): 88-110, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26365708

RESUMO

The helical shape of the human stomach pathogen Helicobacter pylori has been suggested to provide mechanical advantage for penetrating the viscous stomach mucus layer. Using single-cell tracking and quantitative morphology analysis, we document marked variation in cell body helical parameters and flagellum number among H. pylori strains leading to distinct and broad speed distributions in broth and viscous gastric mucin media. These distributions reflect both temporal variation in swimming speed and morphologic variation within the population. Isogenic mutants with straight-rod morphology showed 7-21% reduction in speed and a lower fraction of motile bacteria. Mutational perturbation of flagellum number revealed a 19% increase in speed with 4 versus 3 median flagellum number. Resistive force theory modeling incorporating variation of both cell shape and flagellum number predicts qualitative speed differences of 10-30% among strains. However, quantitative comparisons suggest resistive force theory underestimates the influence of cell body shape on speed for helical shaped bacteria.


Assuntos
Adaptação Fisiológica , Flagelos/fisiologia , Helicobacter pylori/fisiologia , Locomoção , Rastreamento de Células , Meios de Cultura/química , Humanos , Mucinas/metabolismo , Análise de Célula Única
13.
J Bacteriol ; 197(17): 2831-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26100043

RESUMO

UNLABELLED: Salmonella enteric serovar Typhimurium, a major cause of food-borne illness, is capable of using a variety of carbon and nitrogen sources. Fructoselysine and glucoselysine are Maillard reaction products formed by the reaction of glucose or fructose, respectively, with the ε-amine group of lysine. We report here that S. Typhimurium utilizes fructoselysine and glucoselysine as carbon and nitrogen sources via a mannose family phosphotransferase (PTS) encoded by gfrABCD (glucoselysine/fructoselysine PTS components EIIA, EIIB, EIIC, and EIID; locus numbers STM14_5449 to STM14_5454 in S. Typhimurium 14028s). Genes coding for two predicted deglycases within the gfr operon, gfrE and gfrF, were required for growth with glucoselysine and fructoselysine, respectively. GfrF demonstrated fructoselysine-6-phosphate deglycase activity in a coupled enzyme assay. The biochemical and genetic analyses were consistent with a pathway in which fructoselysine and glucoselysine are phosphorylated at the C-6 position of the sugar by the GfrABCD PTS as they are transported across the membrane. The resulting fructoselysine-6-phosphate and glucoselysine-6-phosphate subsequently are cleaved by GfrF and GfrE to form lysine and glucose-6-phosphate or fructose-6-phosphate. Interestingly, although S. Typhimurium can use lysine derived from fructoselysine or glucoselysine as a sole nitrogen source, it cannot use exogenous lysine as a nitrogen source to support growth. Expression of gfrABCDEF was dependent on the alternative sigma factor RpoN (σ(54)) and an RpoN-dependent LevR-like activator, which we designated GfrR. IMPORTANCE: Salmonella physiology has been studied intensively, but there is much we do not know regarding the repertoire of nutrients these bacteria are able to use for growth. This study shows that a previously uncharacterized PTS and associated enzymes function together to transport and catabolize fructoselysine and glucoselysine. Knowledge of the range of nutrients that Salmonella utilizes is important, as it could lead to the development of new strategies for reducing the load of Salmonella in food animals, thereby mitigating its entry into the human food supply.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Glucosamina/análogos & derivados , Lisina/análogos & derivados , Proteínas de Membrana Transportadoras/metabolismo , Fosfotransferases/metabolismo , Salmonella typhimurium/enzimologia , Animais , Caproatos , Glucosamina/química , Glucosamina/metabolismo , Humanos , Lisina/química , Lisina/metabolismo , Proteínas de Membrana Transportadoras/genética , Estrutura Molecular , Fosfotransferases/classificação , Fosfotransferases/genética , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Especificidade por Substrato
14.
J Bacteriol ; 197(11): 1921-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25825427

RESUMO

UNLABELLED: Flagellar biogenesis in Helicobacter pylori is regulated by a transcriptional hierarchy governed by three sigma factors, RpoD (σ(80)), RpoN (σ(54)), and FliA (σ(28)), that temporally coordinates gene expression with the assembly of the flagellum. Previous studies showed that loss of flagellar protein export apparatus components inhibits transcription of flagellar genes. The FlgS/FlgR two-component system activates transcription of RpoN-dependent genes though an unknown mechanism. To understand better the extent to which flagellar gene regulation is coupled to flagellar assembly, we disrupted flagellar biogenesis at various points and determined how these mutations affected transcription of RpoN-dependent (flaB and flgE) and FliA-dependent (flaA) genes. The MS ring (encoded by fliF) is one of the earliest flagellar structures assembled. Deletion of fliF resulted in the elimination of RpoN-dependent transcripts and an ∼4-fold decrease in flaA transcript levels. FliH is a cytoplasmic protein that functions with the C ring protein FliN to shuttle substrates to the export apparatus. Deletions of fliH and genes encoding C ring components (fliM and fliY) decreased transcript levels of flaB and flgE but had little or no effect on transcript levels of flaA. Transcript levels of flaB and flgE were elevated in mutants where genes encoding rod proteins (fliE and flgBC) were deleted, while transcript levels of flaA was reduced ∼2-fold in both mutants. We propose that FlgS responds to an assembly checkpoint associated with the export apparatus and that FliH and one or more C ring component assist FlgS in engaging this flagellar structure. IMPORTANCE: The mechanisms used by bacteria to couple transcription of flagellar genes with assembly of the flagellum are poorly understood. The results from this study identified components of the H. pylori flagellar basal body that either positively or negatively affect expression of RpoN-dependent flagellar genes. Some of these basal body proteins may interact directly with regulatory proteins that control transcription of the H. pylori RpoN regulon, a hypothesis that can be tested by examining protein-protein interactions in vitro.


Assuntos
Proteínas de Bactérias/genética , Corpos Basais/química , Flagelos/genética , Helicobacter pylori/genética , RNA Polimerase Sigma 54/genética , Fator sigma/genética , Transcrição Gênica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Corpos Basais/metabolismo , Flagelos/química , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/química , Helicobacter pylori/metabolismo , RNA Polimerase Sigma 54/química , RNA Polimerase Sigma 54/metabolismo , Fator sigma/química , Fator sigma/metabolismo
15.
J Bacteriol ; 197(11): 1886-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25802298

RESUMO

UNLABELLED: Flagellar biogenesis is a complex process that involves multiple checkpoints to coordinate transcription of flagellar genes with the assembly of the flagellum. In Helicobacter pylori, transcription of the genes needed in the middle stage of flagellar biogenesis is governed by RpoN and the two-component system consisting of the histidine kinase FlgS and response regulator FlgR. In response to an unknown signal, FlgS autophosphorylates and transfers the phosphate to FlgR, initiating transcription from RpoN-dependent promoters. In the present study, export apparatus protein FlhA was examined as a potential signal protein. Deletion of its N-terminal cytoplasmic sequence dramatically decreased expression of two RpoN-dependent genes, flaB and flgE. Optical biosensing demonstrated a high-affinity interaction between FlgS and a peptide consisting of residues 1 to 25 of FlhA (FlhANT). The KD (equilibrium dissociation constant) was 21 nM and was characterized by fast-on (kon = 2.9 × 10(4) M(-1)s(-1)) and slow-off (koff = 6.2 × 10(-4) s(-1)) kinetics. FlgS did not bind peptides consisting of smaller fragments of the FlhANT sequence. Analysis of binding to purified fragments of FlgS demonstrated that the C-terminal portion of the protein containing the kinase domain binds FlhANT. FlhANT binding did not stimulate FlgS autophosphorylation in vitro, suggesting that FlhA facilitates interactions between FlgS and other structures required to stimulate autophosphorylation. IMPORTANCE: The high-affinity binding of FlgS to FlhA characterized in this study points to an additional role for FlhA in flagellar assembly. Beyond its necessity for type III secretion, the N-terminal cytoplasmic sequence of FlhA is required for RpoN-dependent gene expression via interaction with the C-terminal kinase domain of FlgS.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/enzimologia , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Flagelos/química , Flagelos/genética , Flagelos/metabolismo , Flagelina/genética , Flagelina/metabolismo , Genes Reguladores , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Histidina Quinase , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética
16.
J Bacteriol ; 196(15): 2709-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837287

RESUMO

Flagellar biogenesis in Helicobacter pylori involves the coordinated expression of flagellar genes with assembly of the flagellum. The H. pylori flagellar genes are organized into three regulons based on the sigma factor needed for their transcription (RpoD [σ(80)], RpoN [σ(54)], or FliA [σ(28)]). Transcription of RpoN-dependent genes is activated by a two-component system consisting of the sensor kinase FlgS and the response regulator FlgR. While the cellular cues sensed by the FlgS/FlgR two-component system remain to be elucidated, previous studies revealed that disrupting certain components of the flagellar export apparatus inhibited transcription of the RpoN regulon. FliO is the least conserved of the membrane-bound components of the export apparatus and has not been annotated for any of the H. pylori genomes sequenced to date. A PSI-BLAST analysis identified a potential H. pylori FliO protein which membrane topology algorithms predict to possess a large N-terminal periplasmic domain that is absent from FliO of Escherichia coli and Salmonella, the paradigms for flagellar structure/function studies. FliO was necessary for flagellar biogenesis as well as wild-type levels of motility and transcription of RpoN-dependent and FliA-dependent flagellar genes in H. pylori strain B128. FliO also appears to be required for wild-type levels of the export apparatus protein FlhA in the membrane. Interestingly, the periplasmic and cytoplasmic domains were somewhat dispensable for flagellar gene regulation and assembly, suggesting that these domains have relatively minor roles in flagellar synthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/genética , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/metabolismo , Proteínas de Membrana/metabolismo , Alelos , Proteínas de Bactérias/genética , DNA Complementar/genética , Flagelos/metabolismo , Teste de Complementação Genética , Helicobacter pylori/genética , Proteínas de Membrana/genética , Estrutura Terciária de Proteína , Transporte Proteico , RNA Bacteriano/genética , Análise de Sequência de DNA , Deleção de Sequência
17.
Scientifica (Cairo) ; 2014: 681754, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672734

RESUMO

Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ (54) (also known as RpoN) to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni), Gammaproteobacteria (e.g., Vibrio and Pseudomonas species), and Alphaproteobacteria (e.g., Caulobacter crescentus). This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization.

18.
BMC Genomics ; 14: 602, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24007446

RESUMO

BACKGROUND: Sigma54, or RpoN, is an alternative σ factor found widely in eubacteria. A significant complication in analysis of the global σ54 regulon in a bacterium is that the σ54 RNA polymerase holoenzyme requires interaction with an active bacterial enhancer-binding protein (bEBP) to initiate transcription at a σ54-dependent promoter. Many bacteria possess multiple bEBPs, which are activated by diverse environmental stimuli. In this work, we assess the ability of a promiscuous, constitutively-active bEBP-the AAA+ ATPase domain of DctD from Sinorhizobium meliloti-to activate transcription from all σ54-dependent promoters for the characterization of the σ54 regulon of Salmonella Typhimurium LT2. RESULTS: The AAA+ ATPase domain of DctD was able to drive transcription from nearly all previously characterized or predicted σ54-dependent promoters in Salmonella under a single condition. These promoters are controlled by a variety of native activators and, under the condition tested, are not transcribed in the absence of the DctD AAA+ ATPase domain. We also identified a novel σ54-dependent promoter upstream of STM2939, a homolog of the cas1 component of a CRISPR system. ChIP-chip analysis revealed at least 70 σ54 binding sites in the chromosome, of which 58% are located within coding sequences. Promoter-lacZ fusions with selected intragenic σ54 binding sites suggest that many of these sites are capable of functioning as σ54-dependent promoters. CONCLUSION: Since the DctD AAA + ATPase domain proved effective in activating transcription from the diverse σ54-dependent promoters of the S. Typhimurium LT2 σ54 regulon under a single growth condition, this approach is likely to be valuable for examining σ54 regulons in other bacterial species. The S. Typhimurium σ54 regulon included a high number of intragenic σ54 binding sites/promoters, suggesting that σ54 may have multiple regulatory roles beyond the initiation of transcription at the start of an operon.


Assuntos
Regulação Bacteriana da Expressão Gênica , RNA Polimerase Sigma 54/genética , Regulon , Salmonella typhimurium/genética , Ativação Transcricional , Sítios de Ligação/genética , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , Óperon , Regiões Promotoras Genéticas
19.
J Bacteriol ; 195(18): 4057-66, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836865

RESUMO

Salmonella enterica is a globally significant bacterial food-borne pathogen that utilizes a variety of carbon sources. We report here that Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) uses d-glucosaminate (2-amino-2-deoxy-d-gluconic acid) as a carbon and nitrogen source via a previously uncharacterized mannose family phosphotransferase system (PTS) permease, and we designate the genes encoding the permease dgaABCD (d-glucosaminate PTS permease components EIIA, EIIB, EIIC, and EIID). Two other genes in the dga operon (dgaE and dgaF) were required for wild-type growth of S. Typhimurium with d-glucosaminate. Transcription of dgaABCDEF was dependent on RpoN (σ(54)) and an RpoN-dependent activator gene we designate dgaR. Introduction of a plasmid bearing dgaABCDEF under the control of the lac promoter into Escherichia coli strains DH5α, BL21, and JM101 allowed these strains to grow on minimal medium containing d-glucosaminate as the sole carbon and nitrogen source. Biochemical and genetic data support a catabolic pathway in which d-glucosaminate, as it is transported across the cell membrane, is phosphorylated at the C-6 position by DgaABCD. DgaE converts the resulting d-glucosaminate-6-phosphate to 2-keto-3-deoxygluconate 6-phosphate (KDGP), which is subsequently cleaved by the aldolase DgaF to form glyceraldehyde-3-phosphate and pyruvate. DgaF catalyzes the same reaction as that catalyzed by Eda, a KDGP aldolase in the Entner-Doudoroff pathway, and the two enzymes can substitute for each other in their respective pathways. Examination of the Integrated Microbial Genomes database revealed that orthologs of the dga genes are largely restricted to certain enteric bacteria and a few species in the phylum Firmicutes.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosamina/análogos & derivados , Proteínas de Membrana Transportadoras/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Salmonella typhimurium/enzimologia , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Gluconatos/metabolismo , Glucosamina/metabolismo , Manose/metabolismo , Proteínas de Membrana Transportadoras/genética , Óperon , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fosforilação , Salmonella typhimurium/genética
20.
Microbiology (Reading) ; 159(Pt 1): 58-67, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23154969

RESUMO

Flagellar biogenesis in the gastric pathogen Helicobacter pylori involves a transcriptional hierarchy that utilizes all three sigma factors found in this bacterium (RpoD, RpoN and FliA). Transcription of the RpoN-dependent genes requires the sensor kinase FlgS and response regulator FlgR. It is thought that FlgS senses some cellular cue to regulate transcription of the RpoN-dependent flagellar genes, but this signal has yet to be identified. Previous studies showed that transcription of the RpoN-dependent genes is inhibited by mutations in flhA, which encodes a membrane-bound component of the flagellar protein export apparatus. We found that depending on the H. pylori strain used, insertion mutations in flhA had different effects on expression of RpoN-dependent genes. Mutations in flhA in H. pylori strains B128 and ATCC 43504 (the type strain) were generated by inserting a chloramphenicol resistance cassette so as to effectively eliminate expression of the gene (ΔflhA), or within the gene following codon 77 (designated flhA77) or codon 454 (designated flhA454), which could allow expression of truncated FlhA proteins. All three flhA mutations severely inhibited transcription of the RpoN-dependent genes flaB and flgE in H. pylori B128. In contrast, levels of flaB and flgE transcripts in H. pylori ATCC 43504 bearing either flhA77 or flhA454, but not ΔflhA, were ~60 % of wild-type levels. The FlhA(454) variant was detected in membrane fractions prepared from H. pylori ATCC 43504 but not H. pylori B128, which may account for the phenotypic differences in the flhA mutations of the two strains. Taken together, these findings suggest that only the N-terminal region of FlhA is needed for transcription of the RpoN regulon. Interestingly, expression of an flaB'-'xylE reporter gene in H. pylori ATCC 43504 bearing the flhA77 allele was about eightfold higher than that of a strain with the wild-type allele, suggesting that expression of flaB is not only regulated at the level of transcription but also regulated post-transcriptionally.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/genética , Proteínas de Membrana/genética , Fator sigma/metabolismo , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Mutagênese Insercional , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...