Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713531

RESUMO

Inhibition of Bruton's tyrosine kinase (BTK) through covalent modifications of its active site (e.g., ibrutinib [IBT]) is a preferred treatment for multiple B cell malignancies. However, IBT-treated patients are more susceptible to invasive fungal infections, although the mechanism is poorly understood. Neutrophils are the primary line of defense against these infections; therefore, we examined the impact of IBT on primary human neutrophil effector activity against Aspergillus fumigatus. IBT significantly impaired the ability of neutrophils to kill A. fumigatus and potently inhibited reactive oxygen species (ROS) production, chemotaxis, and phagocytosis. Importantly, exogenous TNFα fully compensated for defects imposed by IBT and newer-generation BTK inhibitors and restored the ability of neutrophils to contain A. fumigatus hyphal growth. Blocking TNFα did not impact ROS production in healthy neutrophils but prevented exogenous TNFα from rescuing the phenotype of IBT-treated neutrophils. The restorative capacity of TNFα was independent of transcription. Moreover, the addition of TNFα immediately rescued ROS production in IBT-treated neutrophils indicating that TNFα worked through a BTK-independent signaling pathway. Finally, TNFα restored effector activity of primary neutrophils from patients on IBT therapy. Altogether, our data indicate that TNFα rescues the antifungal immunity block imposed by inhibition of BTK in primary human neutrophils.

2.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425711

RESUMO

Neutrophils exhibit self-amplified swarming to sites of injury and infection. How swarming is controlled to ensure the proper level of neutrophil recruitment is unknown. Using an ex vivo model of infection, we find that human neutrophils use active relay to generate multiple pulsatile waves of swarming signals. Unlike classic active relay systems such as action potentials, neutrophil swarming relay waves are self-extinguishing, limiting the spatial range of cell recruitment. We identify an NADPH-oxidase-based negative feedback loop that is needed for this self-extinguishing behavior. Through this circuit, neutrophils adjust the number and size of swarming waves for homeostatic levels of cell recruitment over a wide range of initial cell densities. We link a broken homeostat to neutrophil over-recruitment in the context of human chronic granulomatous disease.

3.
iScience ; 25(10): 105226, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36267914

RESUMO

Neutrophil swarming is an emergent host defense mechanism triggered by targets larger than a single neutrophil's capacity to phagocytose. Swarming synergizes neutrophil functions, including chemotaxis, phagocytosis, and reactive oxygen species (ROS) production, and coordinates their deployment by many interacting neutrophils. The potent inflammatory lipid mediator leukotriene B4 (LTB4) has been established as central to orchestrating neutrophil activities during swarming. However, the details regarding how this eicosanoid choreographs the neutrophils involved in swarming are not well explained. Here we leverage microfluidics, genetically deficient mouse cells, and targeted metabolipidomic analysis to demonstrate that transcellular biosynthesis occurs among neutrophils to generate LTB4. Furthermore, transcellular biosynthesis is an entirely sufficient means of generating LTB4 for the purposes of orchestrating neutrophil swarming. These results further our understanding of how neutrophils coordinate their activities during swarming, which will be critical in the design of eventual therapies that can harness the power of swarming behavior.

5.
BMC Infect Dis ; 22(1): 563, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725405

RESUMO

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication that can develop weeks to months after an initial SARS-CoV-2 infection. A complex, time-consuming laboratory evaluation is currently required to distinguish MIS-C from other illnesses. New assays are urgently needed early in the evaluation process to expedite MIS-C workup and initiate treatment when appropriate. This study aimed to measure the performance of a monocyte anisocytosis index, obtained on routine complete blood count (CBC), to rapidly identify subjects with MIS-C at risk for cardiac complications. METHODS: We measured monocyte anisocytosis, quantified by monocyte distribution width (MDW), in blood samples collected from children who sought medical care in a single medical center from April 2020 to October 2020 (discovery cohort). After identifying an effective MDW threshold associated with MIS-C, we tested the utility of MDW as a tier 1 assay for MIS-C at multiple institutions from October 2020 to October 2021 (validation cohort). The main outcome was the early screening of MIS-C, with a focus on children with MIS-C who displayed cardiac complications. The screening accuracy of MDW was compared to tier 1 routine laboratory tests recommended for evaluating a child for MIS-C. RESULTS: We enrolled 765 children and collected 846 blood samples for analysis. In the discovery cohort, monocyte anisocytosis, quantified as an MDW threshold of 24.0, had 100% sensitivity (95% CI 78-100%) and 80% specificity (95% CI 69-88%) for identifying MIS-C. In the validation cohort, an initial MDW greater than 24.0 maintained a 100% sensitivity (95% CI 80-100%) and monocyte anisocytosis displayed a diagnostic accuracy greater that other clinically available hematologic parameters. Monocyte anisocytosis decreased with disease resolution to values equivalent to those of healthy controls. CONCLUSIONS: Monocyte anisocytosis detected by CBC early in the clinical workup improves the identification of children with MIS-C with cardiac complications, thereby creating opportunities for improving current practice guidelines.


Assuntos
COVID-19 , COVID-19/complicações , COVID-19/diagnóstico , Criança , Humanos , Monócitos , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/complicações , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico
6.
J Leukoc Biol ; 111(6): 1133-1145, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35355310

RESUMO

The use of mature neutrophil (granulocyte) transfusions for the treatment of neutropenic patients with invasive fungal infections (IFIs) has been the focus of multiple clinical trials. Despite these efforts, the transfusion of mature neutrophils has resulted in limited clinical benefit, likely owing to problems of insufficient numbers and the very short lifespan of these donor cells. In this report, we employed a system of conditionally immortalized murine neutrophil progenitors that are capable of continuous expansion, allowing for the generation of unlimited numbers of homogenous granulocyte-macrophage progenitors (GMPs). These GMPs were assayed in vivo to demonstrate their effect on survival in 2 models of IFI: candidemia and pulmonary aspergillosis. Mature neutrophils derived from GMPs executed all cardinal functions of neutrophils. Transfused GMPs homed to the bone marrow and spleen, where they completed normal differentiation to mature neutrophils. These neutrophils were capable of homing and extravasation in response to inflammatory stimuli using a sterile peritoneal challenge model. Furthermore, conditionally immortalized GMP transfusions significantly improved survival in models of candidemia and pulmonary aspergillosis. These data confirm the therapeutic benefit of prophylactic GMP transfusions in the setting of neutropenia and encourage development of progenitor cellular therapies for the management of fungal disease in high-risk patients.


Assuntos
Infecções Fúngicas Invasivas , Neutropenia , Neutrófilos , Animais , Candidemia , Terapia Baseada em Transplante de Células e Tecidos , Infecções Fúngicas Invasivas/prevenção & controle , Transfusão de Leucócitos , Camundongos , Neutropenia/terapia , Neutrófilos/transplante , Aspergilose Pulmonar
7.
J Immunol ; 208(7): 1664-1674, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35277418

RESUMO

An impaired neutrophil response to pathogenic fungi puts patients at risk for fungal infections with a high risk of morbidity and mortality. Acquired neutrophil dysfunction in the setting of iatrogenic immune modulators can include the inhibition of critical kinases such as spleen tyrosine kinase (Syk). In this study, we used an established system of conditionally immortalized mouse neutrophil progenitors to investigate the ability to augment Syk-deficient neutrophil function against Candida albicans with TLR agonist signaling. LPS, a known immunomodulatory molecule derived from Gram-negative bacteria, was capable of rescuing effector functions of Syk-deficient neutrophils, which are known to have poor fungicidal activity against Candida species. LPS priming of Syk-deficient mouse neutrophils demonstrates partial rescue of fungicidal activity, including phagocytosis, degranulation, and neutrophil swarming, but not reactive oxygen species production against C. albicans, in part due to c-Fos activation. Similarly, LPS priming of human neutrophils rescues fungicidal activity in the presence of pharmacologic inhibition of Syk and Bruton's tyrosine kinase (Btk), both critical kinases in the innate immune response to fungi. In vivo, neutropenic mice were reconstituted with wild-type or Syk-deficient neutrophils and challenged i.p. with C. albicans. In this model, LPS improved wild-type neutrophil homing to the fungal challenge, although Syk-deficient neutrophils did not persist in vivo, speaking to its crucial role on in vivo persistence. Taken together, we identify TLR signaling as an alternate activation pathway capable of partially restoring neutrophil effector function against Candida in a Syk-independent manner.


Assuntos
Candidíase , Neutrófilos , Transdução de Sinais , Quinase Syk , Receptores Toll-Like , Animais , Candida albicans , Candidíase/imunologia , Degranulação Celular , Humanos , Imunidade Inata , Camundongos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose , Quinase Syk/metabolismo , Receptores Toll-Like/metabolismo
8.
PLoS One ; 16(9): e0257823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587206

RESUMO

Fungal hyphal growth and branching are essential traits that allow fungi to spread and proliferate in many environments. This sustained growth is essential for a myriad of applications in health, agriculture, and industry. However, comparisons between different fungi are difficult in the absence of standardized metrics. Here, we used a microfluidic device featuring four different maze patterns to compare the growth velocity and branching frequency of fourteen filamentous fungi. These measurements result from the collective work of several labs in the form of a competition named the "Fungus Olympics." The competing fungi included five ascomycete species (ten strains total), two basidiomycete species, and two zygomycete species. We found that growth velocity within a straight channel varied from 1 to 4 µm/min. We also found that the time to complete mazes when fungal hyphae branched or turned at various angles did not correlate with linear growth velocity. We discovered that fungi in our study used one of two distinct strategies to traverse mazes: high-frequency branching in which all possible paths were explored, and low-frequency branching in which only one or two paths were explored. While the high-frequency branching helped fungi escape mazes with sharp turns faster, the low-frequency turning had a significant advantage in mazes with shallower turns. Future work will more systematically examine these trends.


Assuntos
Crowdsourcing/métodos , Fungos/crescimento & desenvolvimento , Técnicas Analíticas Microfluídicas/instrumentação , Ascomicetos/crescimento & desenvolvimento , Basidiomycota/crescimento & desenvolvimento , Fenômenos Biológicos , Fungos/classificação , Hifas/classificação , Hifas/crescimento & desenvolvimento , Especificidade da Espécie
10.
Hepatol Commun ; 5(3): 502-515, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33681682

RESUMO

Neutrophils are the most abundant white blood cell in the body and are key participants in the defense against fungal infections. Fungal infections occur often in patients with cirrhosis and are associated with increased 30-day and 90-day mortality. Previous studies have shown that specific neutrophil functions are abnormal in patients with cirrhosis, although the extent of neutrophil dysfunction is not well understood. We tested the ability of neutrophils from 21 hospitalized patients with cirrhosis and 23 healthy control patients to kill Candida albicans, a common fungal pathogen in patients with cirrhosis. Using an assay, we also measured the ability of neutrophils to coordinate multicellular, synchronized control of C. albicans hyphae through a process known as swarming. We found that neutrophils from patients with cirrhosis have significantly decreased fungicidal capacity compared with healthy control neutrophils (53% vs. 74%, P < 0.0001) and diminished ability to control hyphal growth normalized as a ratio to healthy control (0.22 vs. 0.65, P < 0.0001). Moreover, serum from patients with cirrhosis decreases the ability of healthy control neutrophils to kill C. albicans (from 60% to 41%, P < 0.003). Circulating concentration of the inflammatory cytokines tumor necrosis factor α, interleukin-6, and interleukin-8 were found to be significantly elevated in patients with cirrhosis compared to healthy controls. Following pretreatment with granulocyte-colony stimulating factor and granulocyte-macrophage colony-stimulating factor, neutrophil function was restored to almost that of healthy controls. Conclusion: Our data establish profound neutrophil dysfunction against, and altered swarming to, C. albicans in patients with cirrhosis. This dysfunction can be partially reversed with cytokine augmentation ex vivo.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Imunidade/imunologia , Cirrose Hepática/microbiologia , Neutrófilos/microbiologia , Adulto , Candidíase/microbiologia , Estudos de Casos e Controles , Citocinas/sangue , Feminino , Humanos , Hifas/imunologia , Cirrose Hepática/sangue , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia
11.
Nat Med ; 27(3): 454-462, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589825

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely asymptomatic disease, with rare reports of multisystem inflammatory syndrome in children (MIS-C). Identifying immune mechanisms that result in these disparate clinical phenotypes in children could provide critical insights into coronavirus disease 2019 (COVID-19) pathogenesis. Using systems serology, in this study we observed in 25 children with acute mild COVID-19 a functional phagocyte and complement-activating IgG response to SARS-CoV-2, similar to the acute responses generated in adults with mild disease. Conversely, IgA and neutrophil responses were significantly expanded in adults with severe disease. Moreover, weeks after the resolution of SARS-CoV-2 infection, children who develop MIS-C maintained highly inflammatory monocyte-activating SARS-CoV-2 IgG antibodies, distinguishable from acute disease in children but with antibody levels similar to those in convalescent adults. Collectively, these data provide unique insights into the potential mechanisms of IgG and IgA that might underlie differential disease severity as well as unexpected complications in children infected with SARS-CoV-2.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idade de Início , Idoso , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/análise , Infecções Assintomáticas , COVID-19/sangue , COVID-19/patologia , Portador Sadio/sangue , Portador Sadio/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Imunidade/fisiologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Pandemias , Índice de Gravidade de Doença , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/epidemiologia , Adulto Jovem
12.
J Cyst Fibros ; 20(6): 1062-1071, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33589340

RESUMO

BACKGROUND: Excessive neutrophil inflammation is the hallmark of cystic fibrosis (CF) airway disease. Novel technologies for characterizing neutrophil dysfunction may provide insight into the nature of these abnormalities, revealing a greater mechanistic understanding and new avenues for CF therapies that target these mechanisms. METHODS: Blood was collected from individuals with CF in the outpatient clinic, CF individuals hospitalized for a pulmonary exacerbation, and non-CF controls. Using microfluidic assays and advanced imaging technologies, we characterized 1) spontaneous neutrophil migration using microfluidic motility mazes, 2) neutrophil migration to and phagocytosis of Staphylococcal aureus particles in a microfluidic arena, 3) neutrophil swarming on Candida albicans clusters, and 4) Pseudomonas aeruginosa-induced neutrophil transepithelial migration using micro-optical coherence technology (µOCT). RESULTS: Participants included 44 individuals: 16 Outpatient CF, 13 Hospitalized CF, and 15 Non-CF individuals. While no differences were seen with spontaneous migration, CF neutrophils migrated towards S. aureus particles more quickly than non-CF neutrophils (p < 0.05). CF neutrophils, especially Hospitalized CF neutrophils, generated significantly larger aggregates around S. aureus particles over time. Hospitalized CF neutrophils were more likely to have dysfunctional swarming (p < 0.01) and less efficient clearing of C. albicans (p < 0.0001). When comparing trans-epithelial migration towards Pseudomonas aeruginosa epithelial infection, Outpatient CF neutrophils displayed an increase in the magnitude of transmigration and adherence to the epithelium (p < 0.05). CONCLUSIONS: Advanced technologies for characterizing CF neutrophil function reveal significantly altered migratory responses, cell-to-cell clustering, and microbe containment. Future investigations will probe mechanistic basis for abnormal responses in CF to identify potential avenues for novel anti-inflammatory therapeutics.


Assuntos
Fibrose Cística/imunologia , Neutrófilos/imunologia , Adulto , Candida albicans/imunologia , Movimento Celular , Feminino , Humanos , Inflamação/imunologia , Masculino , Técnicas Analíticas Microfluídicas , Fagocitose , Pseudomonas aeruginosa/imunologia , Staphylococcus aureus/imunologia , Tomografia de Coerência Óptica
13.
Sci Rep ; 11(1): 778, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436661

RESUMO

The human leukemia cell line (HL-60) is an alternative to primary neutrophils in research studies. However, because HL-60 cells proliferate in an incompletely differentiated state, they must undergo differentiation before they acquire the functional properties of neutrophils. Here we provide evidence of swarming and chemotaxis in differentiated HL-60 neutrophil-like cells (dHL-60) using precise microfluidic assays. We found that dimethyl sulfoxide differentiated HL-60 cells (DdHL-60) have a larger size, increased length, and lower ability to squeeze through narrow channels compared to primary neutrophils. They migrate through tapered microfluidic channels slower than primary neutrophils, but faster than HL-60s differentiated by other protocols, e.g., using all-trans retinoic acid. We found that dHL-60 can swarm toward zymosan particle clusters, though they display disorganized migratory patterns and produce swarms of smaller size compared to primary neutrophils.


Assuntos
Fatores Quimiotáticos/farmacologia , Quimiotaxia/fisiologia , Dimetil Sulfóxido/farmacologia , Neutrófilos/fisiologia , Tretinoína/farmacologia , Antineoplásicos/farmacologia , Diferenciação Celular/fisiologia , Crioprotetores/farmacologia , Células HL-60 , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/fisiologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos
14.
J Infect Dis ; 224(5): 894-902, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417688

RESUMO

BACKGROUND: Solid organ transplant (SOT) and stem cell transplant (SCT) recipients are at increased risk of invasive fungal disease despite normal neutrophil counts. Here, we measure neutrophil anti-Candida activity. METHODS: Twenty-one SOT and 19 SCT recipients were enrolled 2-4 months posttransplant and compared to 23 healthy control patients (HC). Neutrophils were coincubated with Candida albicans, and percentage killing and swarming responses were measured. RESULTS: Neutrophils from transplant patients had decreased fungicidal capacity compared to HC (42%, 43%, and 72% for SCT, SOT, and HC, respectively; SCT vs HC: P < .0001; SOT vs HC: P < .0001; SOT vs SCT: P = .8), including diminished ability to control hyphal growth (HC vs SOT: 0.1455 vs 0.3894, P ≤ .001; HC vs SCT: 0.1455 vs 0.6295, P ≤ .0001, respectively). Serum from SCT, but not SOT, recipients, inhibited the ability of HC neutrophils to control C. albicans (37%, 45%, and 55% for SCT, SOT, and HC, respectively). Neutrophils' control of hyphal growth was partially restored with granulocyte colony-stimulating factor or granulocyte macrophage colony-stimulating factor. CONCLUSIONS: Despite normal circulating numbers, our data suggest that neutrophils from SOT and SCT recipients mount dysfunctional responses against C. albicans. Intrinsic neutrophil changes and extrinsic serum factors may be responsible for the dysfunction, which is partially reversed with cytokine augmentation.


Assuntos
Antifúngicos/farmacologia , Candida albicans/imunologia , Citocinas , Neutrófilos , Transplante de Órgãos/efeitos adversos , Transplante de Células-Tronco/efeitos adversos , Transplantados , Candida , Humanos , Neutrófilos/imunologia , Transplantes
16.
Nat Commun ; 11(1): 2492, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409681

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
mBio ; 11(3)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398316

RESUMO

Invasive fungal infections constitute a lethal threat, with patient mortality as high as 90%. The incidence of invasive fungal infections is increasing, especially in the setting of patients receiving immunomodulatory agents, chemotherapy, or immunosuppressive medications following solid-organ or bone marrow transplantation. In addition, inhibitors of spleen tyrosine kinase (Syk) have been recently developed for the treatment of patients with refractory autoimmune and hematologic indications. Neutrophils are the initial innate cellular responders to many types of pathogens, including invasive fungi. A central process governing neutrophil recognition of fungi is through lectin binding receptors, many of which rely on Syk for cellular activation. We previously demonstrated that Syk activation is essential for cellular activation, phagosomal maturation, and elimination of phagocytosed fungal pathogens in macrophages. Here, we used combined genetic and chemical inhibitor approaches to evaluate the importance of Syk in the response of neutrophils to Candida species. We took advantage of a Cas9-expressing neutrophil progenitor cell line to generate isogenic wild-type and Syk-deficient neutrophils. Syk-deficient neutrophils are unable to control the human pathogens Candida albicans, Candida glabrata, and Candida auris Neutrophil responses to Candida species, including the production of reactive oxygen species and of cytokines such as tumor necrosis factor alpha (TNF-α), the formation of neutrophil extracellular traps (NETs), phagocytosis, and neutrophil swarming, appear to be critically dependent on Syk. These results demonstrate an essential role for Syk in neutrophil responses to Candida species and raise concern for increased fungal infections with the development of Syk-modulating therapeutics.IMPORTANCE Neutrophils are recognized to represent significant immune cell mediators for the clearance and elimination of the human-pathogenic fungal pathogen Candida The sensing of fungi by innate cells is performed, in part, through lectin receptor recognition of cell wall components and downstream cellular activation by signaling components, including spleen tyrosine kinase (Syk). While the essential role of Syk in macrophages and dendritic cells is clear, there remains uncertainty with respect to its contribution in neutrophils. In this study, we demonstrated that Syk is critical for multiple cellular functions in neutrophils responding to major human-pathogenic Candida species. These data not only demonstrate the vital nature of Syk with respect to the control of fungi by neutrophils but also warn of the potential infectious complications arising from the recent clinical development of novel Syk inhibitors for hematologic and autoimmune disorders.


Assuntos
Candida/patogenicidade , Candidíase/imunologia , Regulação da Expressão Gênica , Neutrófilos/imunologia , Quinase Syk/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/microbiologia , Candida/classificação , Linhagem Celular , Citocinas/imunologia , Armadilhas Extracelulares/imunologia , Feminino , Masculino , Camundongos , Neutrófilos/microbiologia , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Quinase Syk/genética
18.
Nat Commun ; 11(1): 2031, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341348

RESUMO

Neutrophils employ several mechanisms to restrict fungi, including the action of enzymes such as myeloperoxidase (MPO) or NADPH oxidase, and the release of neutrophil extracellular traps (NETs). Moreover, they cooperate, forming "swarms" to attack fungi that are larger than individual neutrophils. Here, we designed an assay for studying how these mechanisms work together and contribute to neutrophil's ability to contain clusters of live Candida. We find that neutrophil swarming over Candida clusters delays germination through the action of MPO and NADPH oxidase, and restricts fungal growth through NET release within the swarm. In comparison with neutrophils from healthy subjects, those from patients with chronic granulomatous disease produce larger swarms against Candida, but their release of NETs is delayed, resulting in impaired control of fungal growth. We also show that granulocyte colony-stimulating factors (GCSF and GM-CSF) enhance swarming and neutrophil ability to restrict fungal growth, even during treatment with chemical inhibitors that disrupt neutrophil function.


Assuntos
Candida albicans/crescimento & desenvolvimento , Neutrófilos/citologia , Neutrófilos/microbiologia , Sistemas CRISPR-Cas , Candidíase/microbiologia , Linhagem Celular , Armadilhas Extracelulares/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Doença Granulomatosa Crônica/microbiologia , Humanos , Processamento de Imagem Assistida por Computador , Análise em Microsséries , NADPH Oxidases/metabolismo , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Methods Mol Biol ; 2087: 107-116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31728986

RESUMO

Neutrophils often communicate with each other and coordinate their actions to seal off large sites of injury and infection that individual neutrophils could not cover. The concerted actions of neutrophils are essential for the expeditious protection of healthy tissues from wounds and microbes. These processes, collectively known as swarming, are typically studied in vivo in mice. However, these studies are low throughput and their relevance to human disease is limited. Recently, new tools have been developed for the study of human neutrophil swarming ex vivo. The emergent microscale swarming assays are providing significant insights into the molecular mediators of swarming. By enabling the direct study of human cells, these assays also shed new light on human diseases and host responses against infections. Here, we describe a robust technique for manufacturing microscale swarming arrays with live microbial targets (e.g., clusters of Candida albicans). These arrays allow for the direct, precise, and efficient interrogation of the antimicrobial functions of human swarming against a variety of targets.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/fisiologia , Movimento Celular/imunologia , Humanos , Fagocitose/imunologia , Imagem com Lapso de Tempo
20.
Lab Chip ; 18(11): 1514-1520, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29770423

RESUMO

Neutrophils are the first white blood cells to respond to microbes and to limit their invasion of the body. However, the growth of the microbes into colonies often challenges the neutrophils ability to contain them. To study the interactions between neutrophils and microbial colonies, we designed an assay for arranging microbes in clusters of controlled size (i.e. living colloids). The patterned microbes in the living colloid are mechanically trapped inside the wells and fully accessible to neutrophils. Using the assay, we studied the interactions between human neutrophils and Candida albicans and Staphylococcus aureus, two common human pathogens. We also probed the susceptibility of C. albicans colloids to caspofungin, a common antifungal drug.


Assuntos
Coloides/química , Ensaios de Triagem em Larga Escala/instrumentação , Interações Hospedeiro-Patógeno/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Neutrófilos/microbiologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Células Cultivadas , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...