Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Pain ; 12: 100104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531614

RESUMO

There is growing literature supporting cannabinoids as a potential therapeutic for pain conditions. The development of chronic pain has been associated with reduced concentrations of the endogenous cannabinoid anandamide (AEA) in the midbrain dorsal periaqueductal gray (dPAG), and microinjections of synthetic cannabinoids into the dPAG are antinociceptive. Therefore, the goal of this study was to examine the role of the dPAG in cannabinoid-mediated sensory inhibition. Given that cannabinoids in the dPAG also elicit sympathoexcitation, a secondary goal was to assess coordination between sympathetic and antinociceptive responses. AEA was microinjected into the dPAG while recording single unit activity of wide dynamic range (WDR) dorsal horn neurons (DHNs) evoked by high intensity mechanical stimulation of the hindpaw, concurrently with renal sympathetic nerve activity (RSNA), in anesthetized male rats. AEA microinjected into the dPAG decreased evoked DHN activity (n = 24 units), for half of which AEA also elicited sympathoexcitation. AEA actions were mediated by cannabinoid 1 receptors as confirmed by local pretreatment with the cannabinoid receptor antagonist AM281. dPAG microinjection of the synaptic excitant DL-homocysteic acid (DLH) also decreased evoked DHN activity (n = 27 units), but in all cases this was accompanied by sympathoexcitation. Thus, sensory inhibition elicited from the dPAG is not exclusively linked with sympathoexcitation, suggesting discrete neuronal circuits. The rostrocaudal location of sites may affect evoked responses as AEA produced sensory inhibition without sympathetic effects at 86 % of caudal compared to 25 % of rostral sites, supporting anatomically distinct neurocircuits. These data indicate that spatially selective manipulation of cannabinoid signaling could provide analgesia without potentially harmful autonomic activation.

2.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R749-R762, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36154489

RESUMO

The complexity of neuropathic pain and its associated comorbidities, including dysautonomia, make it difficult to treat. Overlap of anatomical regions and pharmacology of sympathosensory systems in the central nervous system (CNS) provide targets for novel treatment strategies. The dorsal periaqueductal gray (dPAG) is an integral component of both the descending pain modulation system and the acute stress response and is critically involved in both analgesia and the regulation of sympathetic activity. Local manipulation of the endocannabinoid signaling system holds great promise to provide analgesia without excessive adverse effects and also influence autonomic output. Inhibition of fatty acid amide hydrolase (FAAH) increases brain concentrations of the endocannabinoid N-arachidonoylethanolamine (AEA) and reduces pain-related behaviors in neuropathic pain models. Neuropathic hyperalgesia and reduced sympathetic tone are associated with increased FAAH activity in the dPAG, which suggests the hypothesis that inhibition of FAAH in the dPAG will normalize pain sensation and autonomic function in neuropathic pain. To test this hypothesis, the effects of systemic or intra-dPAG FAAH inhibition on hyperalgesia and dysautonomia developed after spared nerve injury (SNI) were assessed in male and female rats. Administration of the FAAH inhibitor PF-3845 into the dPAG reduces hyperalgesia behavior and the decrease in sympathetic tone induced by SNI. Prior administration of the CB1 receptor antagonist AM281, attenuated the antihyperalgesic and sympathetic effects of FAAH inhibition. No sex differences were identified. These data support an integrative role for AEA/CB1 receptor signaling in the dPAG contributing to the regulation of both hyperalgesia behavior and altered sympathetic tone in neuropathic pain.


Assuntos
Neuralgia , Disautonomias Primárias , Feminino , Masculino , Animais , Ratos , Endocanabinoides/farmacologia , Hiperalgesia/tratamento farmacológico , Substância Cinzenta Periaquedutal/metabolismo , Receptor CB1 de Canabinoide , Amidoidrolases/metabolismo , Neuralgia/tratamento farmacológico , Alcamidas Poli-Insaturadas/uso terapêutico
3.
Neurobiol Pain ; 10: 100069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381929

RESUMO

The genesis of neuropathic pain is complex, as sensory abnormalities may differ between patients with different or similar etiologies, suggesting mechanistic heterogeneity, a concept that is largely unexplored. Yet, data are usually grouped for analysis based on the assumption that they share the same underlying pathogenesis. Sex is a factor that may contribute to differences in pain responses. Neuropathic pain is more prevalent in female patients, but pre-clinical studies that can examine pain development in a controlled environment have typically failed to include female subjects. This study explored patterns of development of hyperalgesia-like behavior (HLB) induced by noxious mechanical stimulation in a neuropathic pain model (spared nerve injury, SNI) in both male and female rats, and autonomic dysfunction that is associated with chronic pain. HLB was analyzed across time, using both discrete mixture modeling and rules-based longitudinal clustering. Both methods identified similar groupings of hyperalgesia trajectories after SNI that were not evident when data were combined into groups by sex only. Within the same hyperalgesia development group, mixed models showed that development of HLB in females was delayed relative to males and reached a magnitude similar to or higher than males. The data also indicate that sympathetic tone (as indicated by heart rate variability) drops below pre-SNI level before or at the onset of development of HLB. This study classifies heterogeneity in individual development of HLB and identifies sexual dimorphism in the time course of development of neuropathic pain after nerve injury. Future studies addressing mechanisms underlying these differences could facilitate appropriate pain treatments.

4.
Respir Physiol Neurobiol ; 293: 103715, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34126261

RESUMO

Medial parabrachial nucleus (mPBN) neuronal activity plays a key role in controlling expiratory (E)-duration (TE). Pulmonary stretch receptor (PSR) activity during the E-phase prolongs TE. The aims of this study were to characterize the interaction between the PSR and mPBN control of TE and underlying mechanisms. Decerebrated mechanically ventilated dogs were studied. The mPBN subregion was activated by electrical stimulation via bipolar microelectrode. PSR afferents were activated by low-level currents applied to the transected central vagus nerve. Both stimulus-frequency patterns during the E-phase were synchronized to the phrenic neurogram; TE was measured. A functional mathematical model for the control of TE and extracellular recordings from neurons in the preBötzinger/Bötzinger complex (preBC/BC) were used to understand mechanisms. Findings show that the mPBN gain-modulates, via attenuation, the PSR-mediated reflex. The model suggested functional sites for attenuation and neuronal data suggested correlates. The PSR- and PB-inputs appear to interact on E-decrementing neurons, which synaptically inhibit pre-I neurons, delaying the onset of the next I-phase.


Assuntos
Expiração/fisiologia , Núcleos Parabraquiais/fisiologia , Receptores Pulmonares de Alongamento/fisiologia , Reflexo/fisiologia , Animais , Cães , Estimulação Elétrica , Fatores de Tempo
5.
Respir Physiol Neurobiol ; 265: 127-140, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29964165

RESUMO

Neurons in a subregion of the medial parabrachial (PB) complex control expiratory duration (TE) and the inspiratory on-switch. To better understanding the underlying mechanisms, this study aimed to determine the types of medullary neurons in the rhythmogenic preBötzinger/Bötzinger Complex (preBötC/BötC) and adjacent areas that receive synaptic inputs from the PB subregion and whether these inputs are excitatory or inhibitory in nature. Highly localized electrical stimuli in the PB subregion combined with multi-electrode recordings from respiratory neurons and phrenic nerve activities were used to generate stimulus-to-spike event histograms to detect correlations in decerebrate, vagotomized dogs during isocapnic hyperoxia. Short-time scale correlations were found in 237/442 or ∼54% of the ventral respiratory column (VRC) neurons. Inhibition of E-neurons was ∼2.5X greater than for I-neurons, while Pre-I and I-neurons were excited. These findings indicate that the control of TE and the inspiratory on-switch by the PB subregion are mediated by a marked inhibition of BötC E-neurons combined with an excitation of I-neurons, especially pre-I neurons.


Assuntos
Bulbo/fisiologia , Núcleos Parabraquiais/fisiologia , Nervo Frênico/fisiologia , Centro Respiratório/fisiologia , Taxa Respiratória/fisiologia , Animais , Cães , Feminino , Masculino , Neurônios/fisiologia
6.
Respir Physiol Neurobiol ; 260: 37-52, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502519

RESUMO

Glutamate is the predominant excitatory neurotransmitter in the ventral respiratory column; however, the contribution of glutamatergic excitation in the individual subregions to respiratory rhythm generation has not been fully delineated. In an adult, in vivo, decerebrate rabbit model during conditions of mild hyperoxic hypercapnia we blocked glutamatergic excitation using the receptor antagonists 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) and d(-)-2-amino-5-phosphonopentanoic acid (AP5). Disfacilitation of the preBötzinger Complex caused a decrease in inspiratory and expiratory duration as well as peak phrenic amplitude and ultimately apnea. Disfacilitation of the Bötzinger Complex caused a decrease in inspiratory and expiratory duration; subsequent disfacilitation of the preBötzinger Complex resulted in complete loss of the respiratory pattern but maintained tonic inspiratory activity. We conclude that glutamatergic drive to the preBötzinger Complex is essential for respiratory rhythm generation. Glutamatergic drive to the Bötzinger Complex significantly affects inspiratory and expiratory phase duration. Bötzinger Complex neurons are responsible for maintaining the silent expiratory phase of the phrenic neurogram.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Respiração , Centro Respiratório/citologia , Centro Respiratório/fisiologia , Mecânica Respiratória/fisiologia , Análise de Variância , Animais , Mapeamento Encefálico , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Masculino , Microinjeções , Neurônios/efeitos dos fármacos , Periodicidade , Nervo Frênico , Coelhos , Respiração/efeitos dos fármacos , Centro Respiratório/efeitos dos fármacos , Mecânica Respiratória/efeitos dos fármacos
7.
Anesthesiology ; 127(3): 502-514, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28590302

RESUMO

BACKGROUND: The efficacy of opioid administration to reduce postoperative pain is limited by respiratory depression. We investigated whether clinically relevant opioid concentrations altered the respiratory pattern in the parabrachial nucleus, a pontine region contributing to respiratory pattern generation, and compared these effects with a medullary respiratory site, the pre-Bötzinger complex. METHODS: Studies were performed in 40 young and 55 adult artificially ventilated, decerebrate rabbits. We identified an area in the parabrachial nucleus where α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid microinjections elicited tachypnea. Two protocols were performed in separate sets of animals. First, bilateral microinjections of the µ-opioid receptor agonist [D-Ala, N-MePhe, Gly-ol]-enkephalin (100 µM) into the "tachypneic area" determined the effect of maximal µ-opioid receptor activation. Second, respiratory rate was decreased with continuous IV infusions of remifentanil. The opioid antagonist naloxone (1 mM) was then microinjected bilaterally into the "tachypneic area" of the parabrachial nucleus to determine whether the respiratory rate depression could be locally reversed. RESULTS: Average respiratory rate was 27 ± 10 breaths/min. First, [D-Ala, N-MePhe, Gly-ol]-enkephalin injections decreased respiratory rate by 62 ± 20% in young and 45 ± 26% in adult rabbits (both P < 0.001). Second, during IV remifentanil infusion, bilateral naloxone injections into the "tachypneic area" of the parabrachial nucleus reversed respiratory rate depression from 55 ± 9% to 20 ± 14% in young and from 46 ± 20% to 18 ± 27% in adult rabbits (both P < 0.001). The effects of bilateral [D-Ala, N-MePhe, Gly-ol]-enkephalin injection and IV remifentanil on respiratory phase duration in the "tachypneic area" of the parabrachial nucleus was significantly different from the pre-Bötzinger complex. CONCLUSIONS: The "tachypneic area" of the parabrachial nucleus is highly sensitive to µ-opioid receptor activation and mediates part of the respiratory rate depression by clinically relevant administration of opioids.


Assuntos
Analgésicos Opioides/farmacologia , Núcleos Parabraquiais/efeitos dos fármacos , Piperidinas/farmacologia , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/fisiopatologia , Taxa Respiratória/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Masculino , Coelhos , Remifentanil
8.
Am J Physiol Regul Integr Comp Physiol ; 312(4): R585-R596, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28148494

RESUMO

Nerve damage can induce a heightened pain response to noxious stimulation, which is termed hyperalgesia. Pain itself acts as a stressor, initiating autonomic and sensory effects through the dorsal periaqueductal gray (dPAG) to induce both sympathoexcitation and analgesia, which prior studies have shown to be affected by endocannabinoid signaling. The present study addressed the hypothesis that neuropathic pain disrupts autonomic and analgesic regulation by endocannabinoid signaling in the dPAG. Endocannabinoid contents, transcript levels of endocannabinoid signaling components, and catabolic enzyme activity were analyzed in the dPAG of rats at 21 days after painful nerve injury. The responses to two nerve injury models were similar, with two-thirds of animals developing hyperalgesia that was maintained throughout the postinjury period, whereas no sustained change in sensory function was observed in the remaining rats. Anandamide content was lower in the dPAG of rats that developed sustained hyperalgesia, and activity of the catabolic enzyme fatty acid amide hydrolase (FAAH) was higher. Intensity of hyperalgesia was correlated to transcript levels of FAAH and negatively correlated to heart rate and sympathovagal balance. These data suggest that maladaptive endocannabinoid signaling in the dPAG after nerve injury could contribute to chronic neuropathic pain and associated autonomic dysregulation. This study demonstrates that reduced anandamide content and upregulation of FAAH in the dPAG are associated with hyperalgesia and reduced heart rate sustained weeks after nerve injury. These data provide support for the evaluation of FAAH inhibitors for the treatment of chronic neuropathic pain.


Assuntos
Amidoidrolases/metabolismo , Endocanabinoides/metabolismo , Frequência Cardíaca , Neuralgia/fisiopatologia , Substância Cinzenta Periaquedutal/enzimologia , Animais , Regulação Enzimológica da Expressão Gênica , Masculino , Ratos , Ratos Sprague-Dawley , Regulação para Cima
9.
J Neurophysiol ; 117(3): 1030-1042, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974449

RESUMO

The role of the dorsolateral pons in the control of expiratory duration (Te) and breathing frequency is incompletely understood. A subregion of the pontine parabrachial-Kölliker-Fuse (PB-KF) complex of dogs was identified via microinjections, in which localized pharmacologically induced increases in neuronal activity produced increases in breathing rate while decreases in neuronal activity produced decreases in breathing rate. This subregion is also very sensitive to local and systemic opioids. The purpose of this study was to precisely characterize the relationship between the PB-KF subregion pattern of altered neuronal activity and the control of respiratory phase timing as well as the time course of the phrenic nerve activity/neurogram (PNG). Pulse train electrical stimulation patterns synchronized with the onset of the expiratory (E) and/or phrenic inspiratory (I) phase were delivered via a small concentric bipolar electrode while the PNG was recorded in decerebrate, vagotomized dogs. Step frequency patterns during the E phase produced a marked frequency-dependent decrease in Te, while similar step inputs during the I phase increased inspiratory duration (Ti) by 14 ± 3%. Delayed pulse trains were capable of pacing the breathing rate by terminating the E phase and also of triggering a consistent stereotypical inspiratory PNG pattern, even when evoked during apnea. This property suggests that the I-phase pattern generator functions in a monostable circuit mode with a stable E phase and a transient I phase. Thus the I-pattern generator must contain neurons with nonlinear pacemaker-like properties, which allow the network to rapidly obtain a full on-state followed by relatively slow inactivation. The activated network can be further modulated and supplies excitatory drive to the neurons involved with pattern generation.NEW & NOTEWORTHY A circumscribed subregion of the pontine medial parabrachial nucleus plays a key role in the control of breathing frequency primarily via changes in expiratory duration. Excitation of this subregion triggers the onset of the inspiratory phase, resulting in a stereotypical ramplike phrenic activity pattern independent of time within the expiratory phase. The ability to pace the I-burst rate suggests that the in vivo I-pattern generating network must contain functioning pacemaker neurons.


Assuntos
Expiração , Núcleos Parabraquiais/fisiologia , Nervo Frênico/fisiologia , Taxa Respiratória , Animais , Cães , Estimulação Elétrica , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Expiração/efeitos dos fármacos , Feminino , Masculino , Núcleos Parabraquiais/efeitos dos fármacos , Nervo Frênico/efeitos dos fármacos , Respiração/efeitos dos fármacos , Taxa Respiratória/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/administração & dosagem
10.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R254-62, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27280429

RESUMO

The present study was undertaken to examine whether variations in endocannabinoid signaling in the dorsal periaqueductal gray (dPAG) are associated with baseline autonomic nerve activity, heart rate, and blood pressure. Blood pressure was recorded telemetrically in rats, and heart rate and power spectral analysis of heart rate variability were determined. Natural variations from animal to animal provided a range of baseline values for analysis. Transcript levels of endocannabinoid signaling components in the dPAG were analyzed, and endocannabinoid content and catabolic enzyme activity were measured. Higher baseline heart rate was associated with increased anandamide content and with decreased activity of the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), and it was negatively correlated with transcript levels of both FAAH and monoacylglycerol lipase (MAGL), a catabolic enzyme for 2-arachidonoylglycerol (2-AG). Autonomic tone and heart rate, but not blood pressure, were correlated to levels of FAAH mRNA. In accordance with these data, exogenous anandamide in the dPAG of anesthetized rats increased heart rate. These data indicate that in the dPAG, anandamide, a FAAH-regulated lipid, contributes to regulation of baseline heart rate through influences on autonomic outflow.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Pressão Sanguínea/fisiologia , Endocanabinoides/metabolismo , Retroalimentação Fisiológica/fisiologia , Frequência Cardíaca/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Descanso/fisiologia
11.
Respir Physiol Neurobiol ; 212-214: 9-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25850079

RESUMO

The preBötzinger (preBötC) complex has been suggested as the primary site where systemically administered selective serotonin agonists have been shown to reduce or prevent opioid-induced depression of breathing. However, this hypothesis has not been tested pharmacologically in vivo. This study sought to determine whether 5-HT1A receptors within the preBötC and ventral respiratory column (VRC) mediate the tachypneic response induced by intravenous (IV) (±)-8-Hydroxy-2-diproplyaminotetralin hydrobromide (8-OH-DPAT) in a decerebrated dog model. IV 8-OH-DPAT (19 ± 2 µg/kg) reduced both inspiratory (I) and expiratory (E) durations by ∼ 40%, but had no effect on peak phrenic activity (PPA). Picoejection of 1, 10, and 100 µM 8-OH-DPAT on I and E preBötC neurons produced dose-dependent decreases up to ∼ 40% in peak discharge. Surprisingly, microinjections of 8-OH-DPAT and 5-HT within the VRC from the obex to 9 mm rostral had no effect on timing and PPA. These results suggest that the tachypneic effects of IV 8-OH-DPAT are due to receptors located outside of the areas we studied.


Assuntos
Bulbo/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Respiração , Taquipneia/patologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/toxicidade , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Feminino , Masculino , Bulbo/citologia , Bulbo/efeitos dos fármacos , Microinjeções , Neurônios/efeitos dos fármacos , Nervo Frênico/efeitos dos fármacos , Nervo Frênico/fisiologia , Respiração/efeitos dos fármacos , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/toxicidade , Taquipneia/induzido quimicamente
12.
Anesthesiology ; 122(6): 1288-98, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25751234

RESUMO

BACKGROUND: The preBötzinger Complex (preBC) plays an important role in respiratory rhythm generation. This study was designed to determine whether the preBC mediated opioid-induced respiratory rate depression at clinically relevant opioid concentrations in vivo and whether this role was age dependent. METHODS: Studies were performed in 22 young and 32 adult New Zealand White rabbits. Animals were anesthetized, mechanically ventilated, and decerebrated. The preBC was identified by the tachypneic response to injection of D,L-homocysteic acid. (1) The µ-opioid receptor agonist [D-Ala2,N-Me-Phe4,Gly-ol]-enkephalin (DAMGO, 100 µM) was microinjected into the bilateral preBC and reversed with naloxone (1 mM) injection into the preBC. (2) Respiratory depression was achieved with intravenous remifentanil (0.08 to 0.5 µg kg(-1) min(-1)). Naloxone (1 mM) was microinjected into the preBC in an attempt to reverse the respiratory depression. RESULTS: (1) DAMGO injection depressed respiratory rate by 6 ± 8 breaths/min in young and adult rabbits (mean ± SD, P < 0.001). DAMGO shortened the inspiratory and lengthened the expiratory fraction of the respiratory cycle by 0.24 ± 0.2 in adult and young animals (P < 0.001). (2) During intravenous remifentanil infusion, local injection of naloxone into the preBC partially reversed the decrease in inspiratory fraction/increase in expiratory fraction in young and adult animals (0.14 ± 0.14, P < 0.001), but not the depression of respiratory rate (P = 0.19). PreBC injections did not affect respiratory drive. In adult rabbits, the contribution of non-preBC inputs to expiratory phase duration was larger than preBC inputs (3.5 [-5.2 to 1.1], median [25 to 75%], P = 0.04). CONCLUSIONS: Systemic opioid effects on respiratory phase timing can be partially reversed in the preBC without reversing the depression of respiratory rate.


Assuntos
Envelhecimento , Analgésicos Opioides/toxicidade , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/fisiopatologia , Animais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Feminino , Homocisteína/análogos & derivados , Homocisteína/metabolismo , Masculino , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neurônios/fisiologia , Coelhos
13.
Respir Physiol Neurobiol ; 207: 28-39, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25511381

RESUMO

Respiratory-related neurons in the parabrachial-Kölliker-Fuse (PB-KF) region of the pons play a key role in the control of breathing. The neuronal activities of these pontine respiratory group (PRG) neurons exhibit a variety of inspiratory (I), expiratory (E), phase spanning and non-respiratory related (NRM) discharge patterns. Due to the variety of patterns, it can be difficult to classify them into distinct subgroups according to their discharge contours. This report presents a method that automatically classifies neurons according to their discharge patterns and derives an average subgroup contour of each class. It is based on the K-means clustering technique and it is implemented via SigmaPlot User-Defined transform scripts. The discharge patterns of 135 canine PRG neurons were classified into seven distinct subgroups. Additional methods for choosing the optimal number of clusters are described. Analysis of the results suggests that the K-means clustering method offers a robust objective means of both automatically categorizing neuron patterns and establishing the underlying archetypical contours of subtypes based on the discharge patterns of group of neurons.


Assuntos
Potenciais de Ação/fisiologia , Núcleo de Kölliker-Fuse/citologia , Modelos Biológicos , Neurônios/classificação , Neurônios/fisiologia , Respiração , Animais , Análise por Conglomerados , Cães , Estimulação Elétrica
14.
J Neurophysiol ; 108(9): 2430-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22875901

RESUMO

Life-threatening side effects such as profound bradypnea or apnea and variable upper airway obstruction limit the use of opioids for analgesia. It is yet unclear which sites containing µ-opioid receptors (µORs) within the intact in vivo mammalian respiratory control network are responsible. The purpose of this study was 1) to define the pontine region in which µOR agonists produce bradypnea and 2) to determine whether antagonism of those µORs reverses bradypnea produced by intravenous remifentanil (remi; 0.1-1.0 µg·kg(-1)·min(-1)). The effects of microinjections of agonist [D-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (DAMGO; 100 µM) and antagonist naloxone (NAL; 100 µM) into the dorsal rostral pons on the phrenic neurogram were studied in a decerebrate, vagotomized, ventilated, paralyzed canine preparation during hyperoxia. A 1-mm grid pattern of microinjections was used. The DAMGO-sensitive region extended from 5 to 7 mm lateral of midline and from 0 to 2 mm caudal of the inferior colliculus at a depth of 3-4 mm. During remi-induced bradypnea (~72% reduction in fictive breathing rate) NAL microinjections (~500 nl each) within the region defined by the DAMGO protocol were able to reverse bradypnea by 47% (SD 48.0%) per microinjection, with 13 of 84 microinjections producing complete reversal. Histological examination of fluorescent microsphere injections shows that the sensitive region corresponds to the parabrachial/Kölliker-Fuse complex.


Assuntos
Analgésicos Opioides/toxicidade , Anestésicos Intravenosos/toxicidade , Piperidinas/toxicidade , Ponte/efeitos dos fármacos , Receptores Opioides mu/metabolismo , Taxa Respiratória/efeitos dos fármacos , Animais , Mapeamento Encefálico , Diafragma/inervação , Cães , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Hiperóxia , Infusões Intravenosas , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Nervo Frênico/fisiologia , Ponte/metabolismo , Ponte/fisiologia , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inibidores , Remifentanil , Taxa Respiratória/fisiologia
15.
Pain ; 152(2): 274-284, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20943317

RESUMO

Nociception modulates heart rate (HR) and mean arterial pressure (MAP), suggesting their use of HR and MAP as indicators of pain in animals. We explored this with telemetric recording in unrestrained control and neuropathic (spinal nerve ligation) rats. Plantar stimulation was performed emulating techniques commonly used to measure pain, specifically brush stroke, von Frey fiber application, noxious pin stimulation, acetone for cooling, and radiant heating, while recording MAP, HR, and specific evoked somatomotor behaviors (none; simple withdrawal; or sustained lifting, shaking, and grooming representing hyperalgesia). Pin produced elevations in both HR and MAP, and greater responses accompanied hyperalgesia behavior compared to simple withdrawal. Von Frey stimulation depressed MAP, and increased HR only when stimulation produced hyperalgesia behavior, suggesting that minimal nociception occurs without this behavior. Brush increased MAP even when no movement was evoked. Cold elevated both HR and MAP whether or not there was withdrawal, but MAP increased more when withdrawal was triggered. Heating, consistently depressed HR and MAP, independent of behavior. Other than a greater HR response to pin in animals made hyperalgesic by injury, cardiovascular events evoked by stimulation did not differ between control and neuropathic animals. We conclude that (a) thermoregulation rather than pain may dominate responses to heat and cooling stimuli; (b) brush and cooling stimuli may be perceived and produce cardiovascular activation without nocifensive withdrawal; (c) sensations that produce hyperalgesia behavior are accompanied by greater cardiovascular activation than those producing simple withdrawal; and (d) von Frey stimulation lacks cardiovascular evidence of nociception except when hyperalgesia behavior is evoked.


Assuntos
Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Neuralgia/etiologia , Medição da Dor/métodos , Animais , Procedimentos Cirúrgicos Dermatológicos , Modelos Animais de Doenças , Hiperalgesia/etiologia , Hiperalgesia/fisiopatologia , Hiperalgesia/cirurgia , Ligadura/efeitos adversos , Masculino , Neuralgia/fisiopatologia , Neuralgia/cirurgia , Ratos , Ratos Sprague-Dawley , Pele/fisiopatologia , Vigília/fisiologia
16.
Auton Neurosci ; 158(1-2): 44-50, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-20580326

RESUMO

In prior studies, we found that activation of cannabinoid-1 receptors in the nucleus tractus solitarii (NTS) prolonged baroreflex-induced sympathoinhibition in rats. In many regions of the central nervous system, activation of cannabinoid-1 receptors presynaptically inhibits γ-aminobutyric acid (GABA) release, disinhibiting postsynaptic neurons. To determine if cannabinoid-1 receptor-mediated presynaptic inhibition of GABA release occurs in the NTS, we recorded miniature inhibitory postsynaptic currents in anatomically identified second-order baroreceptive NTS neurons in the presence of ionotropic glutamate receptor antagonists and tetrodotoxin. The cannabinoid-1 receptor agonists, WIN 55212-2 (0.3-30 µM) and methanandamide (3 µM) decreased the frequency of miniature inhibitory postsynaptic currents in a concentration-dependent manner, an effect that was blocked by the cannabinoid-1 receptor antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM 251, 5 µM). Importantly, depolarization of second-order baroreceptive neurons decreased the frequency of miniature inhibitory postsynaptic currents; an effect which was blocked by the cannabinoid-1 receptor antagonist. The data indicate that depolarization of second-order baroreceptive NTS neurons induces endocannabinoid release from the neurons, leading to activation of presynaptic cannabinoid-1 receptors, inhibition of GABA release and subsequent enhanced baroreflex signaling in the NTS. The data suggest that endocannabinoid signaling in the NTS regulates short-term synaptic plasticity and provide a mechanism for endocannabinoid modulation of central baroreflex control.


Assuntos
Barorreflexo/fisiologia , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Inibição Neural/fisiologia , Neurônios/metabolismo , Núcleo Solitário/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Barorreflexo/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Núcleo Solitário/citologia , Núcleo Solitário/efeitos dos fármacos
17.
J Neurophysiol ; 103(1): 409-18, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19906886

RESUMO

Systemic administration of mu-opioids at clinical doses for analgesia typically slows respiratory rate. Mu-opioid receptors (MORs) on pre-Bötzinger Complex (pre-BötC) respiratory neurons, the putative kernel of respiratory rhythmogenesis, are potential targets. The purpose of this study was to determine the contribution of pre-BötC MORs to the bradypnea produced in vivo by intravenous administration of clinically relevant infusion rates of remifentanil (remi), a short-acting, potent mu-opioid analgesic. In decerebrate dogs, multibarrel micropipettes were used to record pre-BötC neuronal activity and to eject the opioid antagonist naloxone (NAL, 0.5 mM), the glutamate agonist D-homocysteic acid (DLH, 20 mM), or the MOR agonist [D-Ala(2), N-Me-Phe(4), gly-ol(5)]-enkephalin (DAMGO, 100 microM). Inspiratory and expiratory durations (T(I) and T(E)) and peak phrenic nerve activity (PPA) were measured from the phrenic neurogram. The pre-BötC was functionally identified by its rate altering response (typically tachypnea) to DLH microinjection. During intravenous remi-induced bradypnea (approximately 60% decrease in central breathing frequency, f(B)), bilateral injections of NAL in the pre-BötC did not change T(I), T(E), f(B), and PPA. Also, NAL picoejected onto single pre-BötC neurons depressed by intravenous remi had no effect on their discharge. In contrast, approximately 60 microg/kg of intravenous NAL rapidly reversed all remi-induced effects. In a separate group of dogs, microinjections of DAMGO in the pre-BötC increased f(B) by 44%, while subsequent intravenous remi infusion more than offset this DAMGO induced tachypnea. These results indicate that mu-opioids at plasma concentrations that cause profound analgesia produce their bradypneic effect via MORs located outside the pre-BötC region.


Assuntos
Analgésicos Opioides/farmacologia , Tronco Encefálico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piperidinas/farmacologia , Taxa Respiratória/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Analgésicos Opioides/administração & dosagem , Animais , Tronco Encefálico/fisiologia , Estado de Descerebração , Cães , Ala(2)-MePhe(4)-Gly(5)-Encefalina/administração & dosagem , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Lateralidade Funcional , Homocisteína/administração & dosagem , Homocisteína/análogos & derivados , Homocisteína/farmacologia , Masculino , Microinjeções , Naloxona/administração & dosagem , Naloxona/farmacologia , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/farmacologia , Neurônios/fisiologia , Nervo Frênico/efeitos dos fármacos , Nervo Frênico/fisiologia , Piperidinas/administração & dosagem , Remifentanil , Taxa Respiratória/fisiologia , Fatores de Tempo
18.
Pain ; 146(3): 293-300, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19729245

RESUMO

The baroreceptor reflex buffers autonomic changes by decreasing sympathetic activity and increasing vagal activity in response to blood pressure elevations, and by the reverse actions when the blood pressure falls. Because of the many bidirectional interactions of pain and autonomic function, we investigated the effect of painful nerve injury by spinal nerve ligation (SNL) on heart rate (HR), blood pressure (BP) and their regulation by the baroreceptor reflex. Rats receiving SNL were separated into either a hyperalgesic group that developed sustained lifting, shaking and grooming of the foot after plantar punctate nociceptive stimulation by pin touch or a group of animals that failed to show this hyperalgesic behavior after SNL. SNL produced no effect on resting BP recorded telemetrically in unrestrained rats compared to control rats receiving either skin incision or sham SNL. However, two tests of baroreceptor gain showed depression only in animals that developed sustained hyperalgesia after SNL. The animals that failed to develop hyperalgesia after SNL were found to have elevations in HR both before and for the first 4 days after SNL, and HR variability analysis gave indications of decreased vagal control of resting HR and elevated sympatho-vagal balance at these same time intervals. In human patients, other research has shown that blunted baroreceptor reflex sensitivity predicts poor outcome during conditions such as hypertension, congestive heart failure, myocardial infarction, and stroke. If baroreceptor reflex suppression is also found in human subjects during chronic neuropathic pain, this may adversely affect survival.


Assuntos
Barorreflexo/fisiologia , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Nervos Espinhais/lesões , Animais , Comportamento Animal/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Ligadura , Masculino , Fenilefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Descanso , Telemetria , Vasoconstritores/farmacologia
19.
J Neurophysiol ; 101(3): 1211-21, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19091929

RESUMO

Hypoglossal motoneurons (HMNs) innervate all tongue muscles and are vital for maintenance of upper airway patency during inspiration. The relative contributions of the various synaptic inputs to the spontaneous discharge of HMNs in vivo are incompletely understood, especially at the cellular level. The purpose of this study was to determine the role of endogenously activated GABA(A) and glycine receptors in the control of the inspiratory HMN (IHMN) activity in a decerebrate dog model. Multibarrel micropipettes were used to record extracellular unit activity of individual IHMNs during local antagonism of GABA(A) receptors with bicuculline and picrotoxin or glycine receptors with strychnine. Only bicuculline had a significant effect on peak and average discharge frequency and on the slope of the augmenting neuronal discharge pattern. These parameters were increased by 30 +/- 7% (P < 0.001), 30 +/- 8% (P < 0.001), and 25 +/- 7% (P < 0.001), respectively. The effects of picrotoxin and strychnine on the spontaneous neuronal discharge and its pattern were negligible. Our data suggest that bicuculline-sensitive GABAergic, but not picrotoxin-sensitive GABAergic or glycinergic, inhibitory mechanisms actively attenuate the activity of IHMNs in vagotomized decerebrate dogs during hyperoxic hypercapnia. The pattern of GABAergic attenuation of IHMN discharge is characteristic of gain modulation similar to that in respiratory bulbospinal premotor neurons, but the degree of attenuation ( approximately 25%) is less than that seen in bulbospinal premotor neurons ( approximately 60%). The current studies only assess effects on active neuron discharge and do not resolve whether the lack of effect of picrotoxin and strychnine on IHMNs also extends to the inactive expiratory phase.


Assuntos
Potenciais de Ação/fisiologia , Nervo Hipoglosso/fisiologia , Neurônios Motores/fisiologia , Inibição Neural/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Bicuculina/farmacologia , Fenômenos Biofísicos/efeitos dos fármacos , Cães , Feminino , Antagonistas GABAérgicos/farmacologia , Glicinérgicos/farmacologia , Masculino , Neurônios Motores/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Nervo Frênico/fisiologia , Picrotoxina/farmacologia , Serotonina/farmacologia , Estricnina/farmacologia
20.
Adv Exp Med Biol ; 605: 279-84, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18085286

RESUMO

Multibarrel micropipettes were used to simultaneously record unit activity and apply antagonists on individual inspiratory hypoglossal motoneurons (IHMNs) to determine the endogenous activation levels of NMDA, non-NMDA, GABA(A) and serotonin receptors responsible for the IHMN spontaneous discharge patterns in decerebrate dogs. IHMN activity is highly dependent on glutamatergic phasic and tonic drives, which are differentially mediated by the receptor subtypes. Endogenous serotonin significantly amplifies IHMN activity, while GABAergic gain modulation acts to attenuate activity. Thus, alterations in the neurotransmission of any of these systems could markedly alter neuronal output to target muscles.


Assuntos
Nervo Hipoglosso/fisiologia , Neurônios Motores/fisiologia , Transmissão Sináptica/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Bicuculina/farmacologia , Estado de Descerebração , Cães , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketanserina/farmacologia , Modelos Animais , Modelos Neurológicos , Quinoxalinas/farmacologia , Língua/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...