Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(4): 041001, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335333

RESUMO

With excellent energy resolution and ultralow-level radiogenic backgrounds, the high-purity germanium detectors in the Majorana Demonstrator enable searches for several classes of exotic dark matter (DM) models. In this work, we report new experimental limits on keV-scale sterile neutrino DM via the transition magnetic moment from conversion to active neutrinos ν_{s}→ν_{a}. We report new limits on fermionic dark matter absorption (χ+A→ν+A) and sub-GeV DM-nucleus 3→2 scattering (χ+χ+A→ϕ+A), and new exclusion limits for bosonic dark matter (axionlike particles and dark photons). These searches utilize the (1-100)-keV low-energy region of a 37.5-kg y exposure collected by the Demonstrator between May 2016 and November 2019 using a set of ^{76}Ge-enriched detectors whose surface exposure time was carefully controlled, resulting in extremely low levels of cosmogenic activation.

2.
Phys Rev Lett ; 131(15): 152501, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37897780

RESUMO

^{180m}Ta is a rare nuclear isomer whose decay has never been observed. Its remarkably long lifetime surpasses the half-lives of all other known ß and electron capture decays due to the large K-spin differences and small energy differences between the isomeric and lower-energy states. Detecting its decay presents a significant experimental challenge but could shed light on neutrino-induced nucleosynthesis mechanisms, the nature of dark matter, and K-spin violation. For this study, we repurposed the Majorana Demonstrator, an experimental search for the neutrinoless double-beta decay of ^{76}Ge using an array of high-purity germanium detectors, to search for the decay of ^{180m}Ta. More than 17 kg, the largest amount of tantalum metal ever used for such a search, was installed within the ultralow-background detector array. In this Letter, we present results from the first year of Ta data taking and provide an updated limit for the ^{180m}Ta half-life on the different decay channels. With new limits up to 1.5×10^{19} yr, we improved existing limits by 1-2 orders of magnitude which are the most sensitive searches for a single ß and electron capture decay ever achieved. Over all channels, the decay can be excluded for T_{1/2}<0.29×10^{18} yr.

3.
Phys Rev Lett ; 131(9): 091801, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721818

RESUMO

We measured the nuclear-recoil ionization yield in silicon with a cryogenic phonon-sensitive gram-scale detector. Neutrons from a monoenergetic beam scatter off of the silicon nuclei at angles corresponding to energy depositions from 4 keV down to 100 eV, the lowest energy probed so far. The results show no sign of an ionization production threshold above 100 eV. These results call for further investigation of the ionization yield theory and a comprehensive determination of the detector response function at energies below the keV scale.

5.
Phys Rev Lett ; 130(6): 062501, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827565

RESUMO

The Majorana Demonstrator searched for neutrinoless double-ß decay (0νßß) of ^{76}Ge using modular arrays of high-purity Ge detectors operated in vacuum cryostats in a low-background shield. The arrays operated with up to 40.4 kg of detectors (27.2 kg enriched to ∼88% in ^{76}Ge). From these measurements, the Demonstrator has accumulated 64.5 kg yr of enriched active exposure. With a world-leading energy resolution of 2.52 keV FWHM at the 2039 keV Q_{ßß} (0.12%), we set a half-life limit of 0νßß in ^{76}Ge at T_{1/2}>8.3×10^{25} yr (90% C.L.). This provides a range of upper limits on m_{ßß} of (113-269) meV (90% C.L.), depending on the choice of nuclear matrix elements.

6.
Phys Rev Lett ; 129(8): 080401, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36053678

RESUMO

The Majorana Demonstrator neutrinoless double-beta decay experiment comprises a 44 kg (30 kg enriched in ^{76}Ge) array of p-type, point-contact germanium detectors. With its unprecedented energy resolution and ultralow backgrounds, Majorana also searches for rare event signatures from beyond standard model physics in the low energy region below 100 keV. In this Letter, we test the continuous spontaneous localization (CSL) model, one of the mathematically well-motivated wave function collapse models aimed at solving the long-standing unresolved quantum mechanical measurement problem. While the CSL predicts the existence of a detectable radiation signature in the x-ray domain, we find no evidence of such radiation in the 19-100 keV range in a 37.5 kg-y enriched germanium exposure collected between December 31, 2015, and November 27, 2019, with the Demonstrator. We explored both the non-mass-proportional (n-m-p) and the mass-proportional (m-p) versions of the CSL with two different assumptions: that only the quasifree electrons can emit the x-ray radiation and that the nucleus can coherently emit an amplified radiation. In all cases, we set the most stringent upper limit to date for the white CSL model on the collapse rate, λ, providing a factor of 40-100 improvement in sensitivity over comparable searches. Our limit is the most stringent for large parts of the allowed parameter space. If the result is interpreted in terms of the Diòsi-Penrose gravitational wave function collapse model, the lower bound with a 95% confidence level is almost an order of magnitude improvement over the previous best limit.

7.
Phys Rev Lett ; 129(8): 081803, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36053699

RESUMO

Axions were originally proposed to explain the strong-CP problem in QCD. Through axion-photon coupling, the Sun could be a major source of axions, which could be measured in solid state detection experiments with enhancements due to coherent Primakoff-Bragg scattering. The Majorana Demonstrator experiment has searched for solar axions with a set of ^{76}Ge-enriched high purity germanium detectors using a 33 kg-yr exposure collected between January, 2017 and November, 2019. A temporal-energy analysis gives a new limit on the axion-photon coupling as g_{aγ}<1.45×10^{-9} GeV^{-1} (95% confidence level) for axions with mass up to 100 eV/c^{2}. This improves laboratory-based limits between about 1 eV/c^{2} and 100 eV/c^{2}.

8.
Eur Phys J C Part Fields ; 82(3): 226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310515

RESUMO

P-type point contact (PPC) HPGe detectors are a leading technology for rare event searches due to their excellent energy resolution, low thresholds, and multi-site event rejection capabilities. We have characterized a PPC detector's response to α particles incident on the sensitive passivated and p + surfaces, a previously poorly-understood source of background. The detector studied is identical to those in the Majorana Demonstrator experiment, a search for neutrinoless double-beta decay ( 0 ν ß ß ) in 76 Ge. α decays on most of the passivated surface exhibit significant energy loss due to charge trapping, with waveforms exhibiting a delayed charge recovery (DCR) signature caused by the slow collection of a fraction of the trapped charge. The DCR is found to be complementary to existing methods of α identification, reliably identifying α background events on the passivated surface of the detector. We demonstrate effective rejection of all surface α events (to within statistical uncertainty) with a loss of only 0.2% of bulk events by combining the DCR discriminator with previously-used methods. The DCR discriminator has been used to reduce the background rate in the 0 ν ß ß region of interest window by an order of magnitude in the Majorana Demonstrator  and will be used in the upcoming LEGEND-200 experiment.

9.
Phys Rev Lett ; 127(8): 081802, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477436

RESUMO

The Cryogenic Dark Matter Search low ionization threshold experiment (CDMSlite) achieved efficient detection of very small recoil energies in its germanium target, resulting in sensitivity to lightly ionizing particles (LIPs) in a previously unexplored region of charge, mass, and velocity parameter space. We report first direct-detection limits calculated using the optimum interval method on the vertical intensity of cosmogenically produced LIPs with an electric charge smaller than e/(3×10^{5}), as well as the strongest limits for charge ≤e/160, with a minimum vertical intensity of 1.36×10^{-7} cm^{-2} s^{-1} sr^{-1} at charge e/160. These results apply over a wide range of LIP masses (5 MeV/c^{2} to 100 TeV/c^{2}) and cover a wide range of ßγ values (0.1-10^{6}), thus excluding nonrelativistic LIPs with ßγ as small as 0.1 for the first time.

10.
Phys Rev Lett ; 127(6): 061801, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420312

RESUMO

We present limits on spin-independent dark matter-nucleon interactions using a 10.6 g Si athermal phonon detector with a baseline energy resolution of σ_{E}=3.86±0.04(stat)_{-0.00}^{+0.19}(syst) eV. This exclusion analysis sets the most stringent dark matter-nucleon scattering cross-section limits achieved by a cryogenic detector for dark matter particle masses from 93 to 140 MeV/c^{2}, with a raw exposure of 9.9 g d acquired at an above-ground facility. This work illustrates the scientific potential of detectors with athermal phonon sensors with eV-scale energy resolution for future dark matter searches.

11.
Phys Rev Lett ; 125(24): 241803, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412014

RESUMO

We present constraints on the existence of weakly interacting massive particles (WIMPs) from an 11 kg d target exposure of the DAMIC experiment at the SNOLAB underground laboratory. The observed energy spectrum and spatial distribution of ionization events with electron-equivalent energies >200 eV_{ee} in the DAMIC CCDs are consistent with backgrounds from natural radioactivity. An excess of ionization events is observed above the analysis threshold of 50 eV_{ee}. While the origin of this low-energy excess requires further investigation, our data exclude spin-independent WIMP-nucleon scattering cross sections σ_{χ-n} as low as 3×10^{-41} cm^{2} for WIMPs with masses m_{χ} from 7 to 10 GeV c^{-2}. These results are the strongest constraints from a silicon target on the existence of WIMPs with m_{χ}<9 GeV c^{-2} and are directly relevant to any dark matter interpretation of the excess of nuclear-recoil events observed by the CDMS silicon experiment in 2013.

13.
Phys Rev Lett ; 121(5): 051301, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118251

RESUMO

We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 g CDMS high-voltage device). These electron-recoil limits significantly improve experimental constraints on dark matter particles with masses as low as 1 MeV/c^{2}. We demonstrate a sensitivity to dark photons competitive with other leading approaches but using substantially less exposure (0.49 g d). These results demonstrate the scientific potential of phonon-mediated semiconductor detectors that are sensitive to single electronic excitations.

14.
Phys Rev Lett ; 120(21): 211804, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883176

RESUMO

The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in ^{76}Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidate events have been found in 285 days of data taking. New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e/1000.

15.
Phys Rev Lett ; 120(6): 061802, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481237

RESUMO

We report the result of a blinded search for weakly interacting massive particles (WIMPs) using the majority of the SuperCDMS Soudan data set. With an exposure of 1690 kg d, a single candidate event is observed, consistent with expected backgrounds. This analysis (combined with previous Ge results) sets an upper limit on the spin-independent WIMP-nucleon cross section of 1.4×10^{-44} (1.0×10^{-44}) cm^{2} at 46 GeV/c^{2}. These results set the strongest limits for WIMP-germanium-nucleus interactions for masses >12 GeV/c^{2}.

16.
Phys Rev Lett ; 118(25): 251301, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696731

RESUMO

New results are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 52 kg of C_{3}F_{8} located in the SNOLAB underground laboratory. As in previous PICO bubble chambers, PICO-60 C_{3}F_{8} exhibits excellent electron recoil and alpha decay rejection, and the observed multiple-scattering neutron rate indicates a single-scatter neutron background of less than one event per month. A blind analysis of an efficiency-corrected 1167-kg day exposure at a 3.3-keV thermodynamic threshold reveals no single-scattering nuclear recoil candidates, consistent with the predicted background. These results set the most stringent direct-detection constraint to date on the weakly interacting massive particle (WIMP)-proton spin-dependent cross section at 3.4×10^{-41} cm^{2} for a 30-GeV c^{-2} WIMP, more than 1 order of magnitude improvement from previous PICO results.

17.
Phys Rev Lett ; 118(16): 161801, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474933

RESUMO

We present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. Our most stringent DM constraints are set for 11.8 keV mass particles, limiting g_{Ae}<4.5×10^{-13} for pseudoscalars and (α^{'}/α)<9.7×10^{-28} for vectors. We also report a 14.4 keV solar axion coupling limit of g_{AN}^{eff}×g_{Ae}<3.8×10^{-17}, a 1/2ß^{2}<8.5×10^{-48} limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τ_{e}>1.2×10^{24} yr for e^{-}→ invisible.

18.
Appl Radiat Isot ; 126: 185-187, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28318931

RESUMO

Low-background lead for radiation measurement shielding is often assayed for 210Pb to ensure acceptable backgrounds. Samples of lead assayed with a germanium spectrometer calibrated for bremsstrahlung-based assay of 210Pb provide a view into the 210Pb content of commercial lead in the U.S. (other than stockpiled Doe Run lead). Results suggest that the loss of lead smelting in the U.S. has eliminated the traditional supply of "low background" lead (~30Bqkg-1), and indicate current commercial supplies contain roughly an order of magnitude higher 210Pb levels.

19.
Appl Radiat Isot ; 126: 243-248, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28236555

RESUMO

This paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50× 39Ar in P10 standard is 3.6% (k=2).

20.
J Environ Radioact ; 155-156: 122-129, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26990077

RESUMO

Simultaneous measurement of tritium and (14)C would provide an added tool for tracing organic compounds through environmental systems and is possible via beta energy spectroscopy of sample-derived methane in internal-source gas proportional counters. Since the mid-1960's atmospheric tritium and (14)C have fallen dramatically as the isotopic injections from aboveground nuclear testing have been diluted into the ocean and biosphere. In this work, the feasibility of simultaneous tritium and (14)C measurements via proportional counters is revisited in light of significant changes in both the atmospheric and biosphere isotopics and the development of new ultra-low-background gas proportional counting capabilities for small samples (roughly 50 cc methane). A Geant4 Monte Carlo model of a Pacific Northwest National Laboratory (PNNL) proportional counter response to tritium and (14)C is used to analyze small samples of two different methane sources to illustrate the range of applicability of contemporary simultaneous measurements and their limitations. Because the two methane sources examined were not sample size limited, we could compare the small-sample measurements performed at PNNL with analysis of larger samples performed at a commercial laboratory. These first results show that the dual-isotope simultaneous measurement is well matched for methane samples that are atmospheric or have an elevated source of tritium (i.e. landfill gas). However, for samples with low/modern tritium isotopics (rainwater), commercial separation and counting is a better fit.


Assuntos
Radioisótopos de Carbono/análise , Metano/análise , Monitoramento de Radiação/métodos , Trítio/análise , Gases/análise , Modelos Teóricos , Instalações de Eliminação de Resíduos , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...