Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 432(14): 3989-4009, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32304700

RESUMO

The impenetrability of the blood-brain barrier (BBB) to most conventional drugs impedes the treatment of central nervous system (CNS) disorders. Interventions for diseases like brain cancer, neurodegeneration, or age-associated inflammatory processes require varied approaches to CNS drug delivery. Cystine-dense peptides (CDPs) have drawn recent interest as drugs or drug-delivery vehicles. Found throughout the phylogenetic tree, often in drug-like roles, their size, stability, and protein interaction capabilities make CDPs an attractive mid-size biologic scaffold to complement conventional antibody-based drugs. Here, we describe the identification, maturation, characterization, and utilization of a CDP that binds to the transferrin receptor (TfR), a native receptor and BBB transporter for the iron chaperone transferrin. We developed variants with varying binding affinities (KD as low as 216 pM), co-crystallized it with the receptor, and confirmed murine cross-reactivity. It accumulates in the mouse CNS at ~25% of blood levels (CNS blood content is only ~1%-6%) and delivers neurotensin, an otherwise non-BBB-penetrant neuropeptide, at levels capable of modulating CREB signaling in the mouse brain. Our work highlights the utility of CDPs as a diverse, easy-to-screen scaffold family worthy of inclusion in modern drug discovery strategies, demonstrated by the discovery of a candidate CNS drug delivery vehicle ready for further optimization and preclinical development.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Peptídeos/farmacologia , Animais , Antígenos CD/química , Antígenos CD/efeitos dos fármacos , Antígenos CD/genética , Antígenos CD/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Cistina/química , Cistina/genética , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Neuropeptídeos/química , Neuropeptídeos/farmacologia , Neurotensina/química , Neurotensina/farmacologia , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Receptores da Transferrina/química , Receptores da Transferrina/efeitos dos fármacos , Receptores da Transferrina/genética
2.
Sci Transl Med ; 12(533)2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132215

RESUMO

On-target, off-tissue toxicity limits the systemic use of drugs that would otherwise reduce symptoms or reverse the damage of arthritic diseases, leaving millions of patients in pain and with limited physical mobility. We identified cystine-dense peptides (CDPs) that rapidly accumulate in cartilage of the knees, ankles, hips, shoulders, and intervertebral discs after systemic administration. These CDPs could be used to concentrate arthritis drugs in joints. A cartilage-accumulating peptide, CDP-11R, reached peak concentration in cartilage within 30 min after administration and remained detectable for more than 4 days. Structural analysis of the peptides by crystallography revealed that the distribution of positive charge may be a distinguishing feature of joint-accumulating CDPs. In addition, quantitative whole-body autoradiography showed that the disulfide-bonded tertiary structure is critical for cartilage accumulation and retention. CDP-11R distributed to joints while carrying a fluorophore imaging agent or one of two different steroid payloads, dexamethasone (dex) and triamcinolone acetonide (TAA). Of the two payloads, the dex conjugate did not advance because the free drug released into circulation was sufficient to cause on-target toxicity. In contrast, the CDP-11R-TAA conjugate alleviated joint inflammation in the rat collagen-induced model of rheumatoid arthritis while avoiding toxicities that occurred with nontargeted steroid treatment at the same molar dose. This conjugate shows promise for clinical development and establishes proof of concept for multijoint targeting of disease-modifying therapeutic payloads.


Assuntos
Artrite Experimental , Corticosteroides , Animais , Artrite Experimental/tratamento farmacológico , Cartilagem , Humanos , Peptídeos , Ratos , Esteroides
3.
Anticancer Res ; 38(1): 51-60, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277756

RESUMO

BACKGROUND/AIM: Developments in imaging have improved cancer diagnosis, but identification of malignant cells during surgical resection remains a challenge. The aim of this study was to investigate the pacifastin family of peptides for novel activity targeting tumor cells and the delivery of either imaging or therapeutic agents. MATERIALS AND METHODS: Variants of pacifastin family peptides were generated, chemically modified and tested in human tumor xenografts. RESULTS: A tumor-homing peptide-dye conjugate (THP1) accumulated in tumors in vivo and was internalized into cells. Examination of related peptides revealed residues critical for accumulation and allowed the engineering of improved tumor-targeting variants. A THP1-drug conjugate carrying the microtubule inhibitor, MMAE, showed limited activity in vitro and no difference compared to vehicle control in vivo. CONCLUSION: Although there are some obstacles to developing pacifastin-derived peptides for therapeutic activity, these optimized peptides have great promise for cancer imaging.


Assuntos
Neoplasias/diagnóstico por imagem , Peptídeos/uso terapêutico , Proteínas , Animais , Autorradiografia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos Nus , Microscopia Confocal , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico
4.
J Mol Biol ; 428(11): 2317-2328, 2016 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-27012425

RESUMO

There is now substantial evidence that soluble oligomers are primary toxic agents in amyloid diseases. The development of an antibody recognizing the toxic soluble oligomeric forms of different and unrelated amyloid species suggests a common conformational intermediate during amyloidogenesis. We previously observed a common occurrence of a novel secondary structure element, which we call α-sheet, in molecular dynamics (MD) simulations of various amyloidogenic proteins, and we hypothesized that the toxic conformer is composed of α-sheet structure. As such, α-sheet may represent a conformational signature of the misfolded intermediates of amyloidogenesis and a potential unique binding target for peptide inhibitors. Recently, we reported the design and characterization of a novel hairpin peptide (α1 or AP90) that adopts stable α-sheet structure and inhibits the aggregation of the ß-Amyloid Peptide Aß42 and transthyretin. AP90 is a 23-residue hairpin peptide featuring alternating D- and L-amino acids with favorable conformational propensities for α-sheet formation, and a designed turn. For this study, we reverse engineered AP90 to identify which of its design features is most responsible for conferring α-sheet stability and inhibitory activity. We present experimental characterization (CD and FTIR) of seven peptides designed to accomplish this. In addition, we measured their ability to inhibit aggregation in three unrelated amyloid species: Aß42, transthyretin, and human islet amylin polypeptide. We found that a hairpin peptide featuring alternating L- and D-amino acids, independent of sequence, is sufficient for conferring α-sheet structure and inhibition of aggregation. Additionally, we show a correlation between α-sheet structural stability and inhibitory activity.


Assuntos
Aminoácidos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Sequência de Aminoácidos , Amiloidose/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Simulação de Dinâmica Molecular , Pré-Albumina/metabolismo , Agregados Proteicos/fisiologia , Multimerização Proteica/fisiologia , Estrutura Secundária de Proteína
5.
Protein Eng Des Sel ; 27(11): 447-55, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25233851

RESUMO

D-amino acids are useful building blocks for de novo peptide design and they play a role in aging-related diseases associated with gradual protein racemization. For amino acids with achiral side chains, one should be able to presume that the conformational propensities of L- and D-amino acids are a reflection of one another due to the straightforward geometric inversion at the Cα atom. However, this presumption does not account for the directionality of the backbone dipole and the inverted propensities have never been definitively confirmed in this context. Furthermore, there is little known of how alternative side chain chirality affects the backbone conformations of isoleucine and threonine. Using a GGXGG host-guest pentapeptide system, we have completed exhaustive sampling of the conformational propensities of the D-amino acids, including D-allo-isoleucine and D-allo-threonine, using atomistic molecular dynamics simulations. Comparison of these simulations with the same systems hosting the cognate L-amino acids verifies that the intrinsic backbone conformational propensities of the D-amino acids are the inverse of their cognate L-enantiomers. Where amino acids have a chiral center in their side chain (Thr, Ile) the ß-configuration affects the backbone sampling, which in turn can confer different biological properties.


Assuntos
Aminoácidos/química , Estrutura Secundária de Proteína , Proteínas/química , Bases de Dados Factuais , Simulação de Dinâmica Molecular , Estereoisomerismo
6.
Biochem Pharmacol ; 91(4): 534-42, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25101833

RESUMO

Neuronal nicotinic acetylcholine receptors (nAChRs) are a diverse class of ligand-gated ion channels involved in neurological conditions such as neuropathic pain and Alzheimer's disease. α-Conotoxin [A10L]PnIA is a potent and selective antagonist of the mammalian α7 nAChR with a key binding interaction at position 10. We now describe a molecular analysis of the receptor-ligand interactions that determine the role of position 10 in determining potency and selectivity for the α7 and α3ß2 nAChR subtypes. Using electrophysiological and radioligand binding methods on a suite of [A10L]PnIA analogs we observed that hydrophobic residues in position 10 maintained potency at both subtypes whereas charged or polar residues abolished α7 binding. Molecular docking revealed dominant hydrophobic interactions with several α7 and α3ß2 receptor residues via a hydrophobic funnel. Incorporation of norleucine (Nle) caused the largest (8-fold) increase in affinity for the α7 subtype (Ki=44nM) though selectivity reverted to α3ß2 (IC50=0.7nM). It appears that the placement of a single methyl group determines selectivity between α7 and α3ß2 nAChRs via different molecular determinants.


Assuntos
Conotoxinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Conotoxinas/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ensaio Radioligante , Espectrometria de Massas por Ionização por Electrospray , Xenopus
7.
Elife ; 3: e01681, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027691

RESUMO

Previous studies suggest that the toxic soluble-oligomeric form of different amyloid proteins share a common backbone conformation, but the amorphous nature of this oligomer prevents its structural characterization by experiment. Based on molecular dynamics simulations we proposed that toxic intermediates of different amyloid proteins adopt a common, nonstandard secondary structure, called α-sheet. Here we report the experimental characterization of peptides designed to be complementary to the α-sheet conformation observed in the simulations. We demonstrate inhibition of aggregation in two different amyloid systems, ß-amyloid peptide (Aß) and transthyretin, by these designed α-sheet peptides. When immobilized the α-sheet designs preferentially bind species from solutions enriched in the toxic conformer compared with non-aggregated, nontoxic species or mature fibrils. The designs display characteristic spectroscopic signatures distinguishing them from conventional secondary structures, supporting α-sheet as a structure involved in the toxic oligomer stage of amyloid formation and paving the way for novel therapeutics and diagnostics.DOI: http://dx.doi.org/10.7554/eLife.01681.001.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Pré-Albumina/metabolismo , Multimerização Proteica/efeitos dos fármacos , Simulação de Dinâmica Molecular , Agregados Proteicos , Conformação Proteica
8.
ACS Med Chem Lett ; 4(9): 824-8, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900756

RESUMO

The trpzip peptides are small, monomeric, and extremely stable ß-hairpins that have become valuable tools for studying protein folding. Here, we show that trpzip-3 inhibits aggregation in two very different amyloid systems: transthyretin and Aß(1-42). Interestingly, Trp → Leu mutations renders the peptide ineffective against transthyretin, but Aß inhibition remains. Computational docking was used to predict the interactions between trpzip-3 and transthyretin, suggesting that inhibition occurs via binding to the outer region of the thyroxine-binding site, which is supported by dye displacement experiments.

10.
J Pept Sci ; 16(10): 551-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20862722

RESUMO

The standard p-MBHA resin used during Boc-chemistry synthesis of peptides carrying C-terminal carboxamides is compromised by batch-to-batch variations in its performance. This can cause artificially 'difficult' couplings during peptide chain assembly, which may ultimately lead to failed syntheses given the inability to achieve acceptable coupling yields. To overcome these problems, we have developed a new approach by grafting a functionalized benzhydrylamine linker onto well-characterized and well-performing PAM resins. We combine optimized Boc-chemistry, high-performing PAM resins and new benzhydrylamine-based linkers to achieve improved syntheses of peptide amides. Here we present the synthesis of two new benzhydrylamine linkers and their attachment to selected PAM resins. This novel solid support was evaluated through the synthesis of selected 'difficult' conotoxins and monitoring the coupling efficiency using quantitative ninhydrin assay. The results show a superior performance of the novel linker solid support compared to the standard p-MBHA resins routinely used. In summary, we describe an alternative linker-resin system that allows improved access to C-terminal amide peptides employing Boc/Bzl chemistry.


Assuntos
Amidas/síntese química , Compostos Benzidrílicos/química , Peptídeos/química , Amidas/química , Animais , Conotoxinas/síntese química , Conotoxinas/química , Ésteres do Ácido Fórmico/química , Estrutura Molecular , Peptídeos/síntese química
11.
EMBO J ; 26(16): 3858-67, 2007 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-17660751

RESUMO

Neuronal nAChRs are a diverse family of pentameric ion channels with wide distribution throughout cells of the nervous and immune systems. However, the role of specific subtypes in normal and pathological states remains poorly understood due to the lack of selective probes. Here, we used a binding assay based on acetylcholine-binding protein (AChBP), a homolog of the nicotinic acetylcholine ligand-binding domain, to discover a novel alpha-conotoxin (alpha-TxIA) in the venom of Conus textile. Alpha-TxIA bound with high affinity to AChBPs from different species and selectively targeted the alpha(3)beta(2) nAChR subtype. A co-crystal structure of Ac-AChBP with the enhanced potency analog TxIA(A10L), revealed a 20 degrees backbone tilt compared to other AChBP-conotoxin complexes. This reorientation was coordinated by a key salt bridge formed between Arg5 (TxIA) and Asp195 (Ac-AChBP). Mutagenesis studies, biochemical assays and electrophysiological recordings directly correlated the interactions observed in the co-crystal structure to binding affinity at AChBP and different nAChR subtypes. Together, these results establish a new pharmacophore for the design of novel subtype-selective ligands with therapeutic potential in nAChR-related diseases.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Conotoxinas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Acetilcolina/química , Acetilcolina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Conotoxinas/genética , Cristalografia por Raios X , Lymnaea , Modelos Moleculares , Dados de Sequência Molecular , Neurotoxinas/genética , Neurotoxinas/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Ligação Proteica , Isoformas de Proteínas/genética , Estrutura Quaternária de Proteína , Ratos , Receptores Nicotínicos/genética , Relação Estrutura-Atividade , Xenopus laevis
12.
J Biol Chem ; 278(29): 26908-14, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12746432

RESUMO

The effects of the native alpha-conotoxin PnIA, its synthetic derivative [A10L]PnIA and alanine scan derivatives of [A10L]PnIA were investigated on chick wild type alpha7 and alpha7-L247T mutant nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes. PnIA and [A10L]PnIA inhibited acetylcholine (ACh)-activated currents at wtalpha7 receptors with IC50 values of 349 and 168 nm, respectively. Rates of onset of inhibition were similar for PnIA and [A10L]PnIA; however, the rate of recovery was slower for [A10L]PnIA, indicating that the increased potency of [A10L]PnIA at alpha7 receptors is conveyed by its slower rate of dissociation from the receptors. All the alanine mutants of [A10L]PnIA inhibited ACh-activated currents at wtalpha7 receptors. Insertion of an alanine residue between position 5 and 13 and at position 15 significantly reduced the ability of [A10L]PnIA to inhibit ACh-evoked currents. PnIA inhibited the non-desensitizing ACh-activated currents at alpha7-L247T receptors with an IC50 194 nm. In contrast, [A10L]PnIA and the alanine mutants potentiated the ACh-activated current alpha7-L247T receptors and in addition [A10L]PnIA acted as an agonist. PnIA stabilized the receptor in a state that is non-conducting in both the wild type and mutant receptors, whereas [A10L]PnIA stabilized a state that is non-conducting in the wild type receptor and conducting in the alpha7-L247T mutant. These data indicate that the change of a single amino acid side-chain, at position 10, is sufficient to change the toxin specificity for receptor states in the alpha7-L247T mutant.


Assuntos
Conotoxinas/genética , Conotoxinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Galinhas , Feminino , Técnicas In Vitro , Cinética , Mutagênese Sítio-Dirigida , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...