Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(11): e0109523, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37882527

RESUMO

IMPORTANCE: Persistence of V. cholerae in the aquatic environment contributes to the fatal diarrheal disease cholera, which remains a global health burden. In the environment, bacteria face predation pressure by heterotrophic protists such as the free-living amoeba A. castellanii. This study explores how a mutant of V. cholerae adapts to acquire essential nutrients and survive predation. Here, we observed that up-regulation of iron acquisition genes and genes regulating resistance to oxidative stress enhances pathogen fitness. Our data show that V. cholerae can defend predation to overcome nutrient limitation and oxidative stress, resulting in an enhanced survival inside the protozoan hosts.


Assuntos
Amoeba , Cólera , Vibrio cholerae , Animais , Vibrio cholerae/genética , Comportamento Predatório , Cólera/microbiologia , Ferro
2.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37458768

RESUMO

Protozoa are eukaryotic organisms that play a crucial role in nutrient cycling and maintaining balance in the food web. Predation, symbiosis and parasitism are three types of interactions between protozoa and bacteria. However, not all bacterial species are equally susceptible to protozoan predation as many are capable of defending against predation in numerous ways and may even establish either a symbiotic or parasitic life-style. Biofilm formation is one such mechanism by which bacteria can survive predation. Structural and chemical components of biofilms enhance resistance to predation compared to their planktonic counterparts. Predation on biofilms gives rise to phenotypic and genetic heterogeneity in prey that leads to trade-offs in virulence in other eukaryotes. Recent advances, using molecular and genomics techniques, allow us to generate new information about the interactions of protozoa and biofilms of prey bacteria. This review presents the current state of the field on impacts of protozoan predation on biofilms. We provide an overview of newly gathered insights into (i) molecular mechanisms of predation resistance in biofilms, (ii) phenotypic and genetic diversification of prey bacteria, and (iii) evolution of virulence as a consequence of protozoan predation on biofilms.


Assuntos
Eucariotos , Comportamento Predatório , Animais , Virulência , Bactérias , Biofilmes
3.
J Bacteriol ; 205(4): e0040622, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36927058

RESUMO

A significant cause of shigellosis in Bangladesh and other developing countries is Shigella flexneri serotype 6. This serotype has been subtyped, on the basis of the absence or presence of a group-specific antigen, E1037, into S. flexneri 6a and 6b, respectively. Here, we provided rationales for the subclassification, using several phenotypic and molecular tools. A set of S. flexneri 6a and 6b strains isolated between 1997 and 2015 were characterized by analyzing their biochemical properties, plasmid profiles, virulence markers, pulsed-field gel electrophoresis (PFGE) results, and ribotype. Additionally, the genomic relatedness of these subserotypes was investigated with global isolates of serotype 6 using publicly available genomes. Both subserotypes of S. flexneri 6 agglutinated with monoclonal antiserum against S. flexneri (MASF) B and type VI-specific antiserum (MASF VI) and were PCR positive for O-antigen flippase-specific genes and virulence markers (ipaH, ial, sen, and sigA). Unlike S. flexneri 6a strains, S. flexneri 6b strains seroagglutinated with anti-E1037 antibodies, MASF IV-I. Notably, these two antigenically distinct subserotypes were clonally diverse, showing two distinct PFGE patterns following the digestion of chromosomal DNA with either XbaI or IceuI. In addition, hybridization of a 16S rRNA gene probe with HindIII-digested genomic DNA yielded two distinguishing ribotypes. Genomic comparison of S. flexneri subserotype 6a and 6b strains from Bangladesh indicated that, although these strains were in genomic synteny, the majority of them formed a unique phylogroup (PG-4) that was missing for the global isolates. This study supports the subserotyping and emphasizes the need for global monitoring of the S. flexneri subserotypes 6a and 6b. IMPORTANCE Shigella flexneri serotype 6 is one of the predominant serotypes among shigellosis cases in Bangladesh. Characterization of a novel subserotype of S. flexneri 6 (VI:E1037), agglutinated with type 6-specific antibody and anti-E1037, indicates a unique evolutionary ancestry. PFGE genotyping supports the finding that these two antigenically distinct subserotypes are clonally diverse. A phylogenetic study based on single-nucleotide polymorphism (SNP) data revealed that these two subserotypes were in genomic synteny, although their genomes were reduced. Interestingly, a majority of the S. flexneri 6 strains isolated from Bangladesh form a novel phylogenetic cluster. Therefore, this report underpins the global monitoring and tracking of the novel subserotype.


Assuntos
Disenteria Bacilar , Shigella flexneri , Humanos , Sorogrupo , Shigella flexneri/genética , Sorotipagem/métodos , Filogenia , Bangladesh/epidemiologia , RNA Ribossômico 16S
4.
Adv Exp Med Biol ; 1404: 99-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36792873

RESUMO

Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.


Assuntos
Vibrio cholerae , Vibrio , Animais , Humanos , Vibrio/genética
5.
ISME J ; 16(8): 1993-2001, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577916

RESUMO

Vibrio cholerae, the bacterial pathogen responsible for the diarrheal disease cholera, resides in the aquatic environment between outbreaks. For bacteria, genetic variation by lateral gene transfer (LGT) is important for survival and adaptation. In the aquatic environment, V. cholerae is predominantly found in biofilms associated with chitinous organisms or with chitin "rain". Chitin induces competency in V. cholerae, which can lead to LGT. In the environment, V. cholerae is also subjected to predation pressure by protist. Here we investigated whether protozoal predation affected LGT using the integron as a model. Integrons facilitate the integration of mobile DNA (gene cassettes) into the bacterial chromosome. We report that protozoal predation enhances transformation of a gene cassette by as much as 405-fold. We show that oxidative radicals produced in the protozoal phagosome induces the universal SOS response, which in turn upregulates the integron-integrase, the recombinase that facilitates cassette integration. Additionally, we show that during predation, V. cholerae requires the type VI secretion system to acquire the gene cassette from Escherichia coli. These results show that protozoal predation enhances LGT thus producing genetic variants that may have increased capacity to survive grazing. Additionally, the conditions in the food vacuole may make it a "hot spot" for LGT by accumulating diverse bacteria and inducing the SOS response helping drive genetic diversification and evolution.


Assuntos
Vibrio cholerae , Bactérias/genética , Quitina , DNA , Escherichia coli/genética , Fagossomos , Vacúolos , Vibrio cholerae/genética
6.
Appl Environ Microbiol ; 88(5): e0232221, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35020451

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa is ubiquitous in the environment, and in humans, it is capable of causing acute or chronic infections. In the natural environment, predation by bacterivorous protozoa represents a primary threat to bacteria. Here, we determined the impact of long-term exposure of P. aeruginosa to predation pressure. P. aeruginosa persisted when coincubated with the bacterivorous Acanthamoeba castellanii for extended periods and produced genetic and phenotypic variants. Sequencing of late-stage amoeba-adapted P. aeruginosa isolates demonstrated single nucleotide polymorphisms within genes that encode known virulence factors, and this correlated with a reduction in expression of virulence traits. Virulence for the nematode Caenorhabditis elegans was attenuated in late-stage amoeba-adapted P. aeruginosa compared to early-stage amoeba-adapted and nonadapted counterparts. Further, late-stage amoeba-adapted P. aeruginosa showed increased competitive fitness and enhanced survival in amoebae as well as in macrophage and neutrophils. Interestingly, our findings indicate that the selection imposed by amoebae resulted in P. aeruginosa isolates with reduced virulence and enhanced fitness, similar to those recovered from chronic cystic fibrosis infections. Thus, predation by protozoa and long-term colonization of the human host may represent similar environments that select for similar losses of gene function. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute infections in plants and animals, including humans, and chronic infections in immunocompromised and cystic fibrosis patients. This bacterium is commonly found in soils and water, where bacteria are constantly under threat of being consumed by bacterial predators, e.g., protozoa. To escape being killed, bacteria have evolved a suite of mechanisms that protect them from being consumed or digested. Here, we examined the effect of long-term predation on the genotypes and phenotypes expressed by P. aeruginosa. We show that long-term coincubation with protozoa gave rise to mutations that resulted in P. aeruginosa becoming less pathogenic. This is particularly interesting as similar mutations arise in bacteria associated with chronic infections. Importantly, the genetic and phenotypic traits possessed by late-stage amoeba-adapted P. aeruginosa are similar to those observed in isolates obtained from chronic cystic fibrosis infections. This notable overlap in adaptation to different host types suggests similar selection pressures among host cell types as well as similar adaptation strategies.


Assuntos
Amoeba , Fibrose Cística , Infecções por Pseudomonas , Animais , Fibrose Cística/microbiologia , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Virulência
7.
ISME J ; 16(3): 856-867, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34654895

RESUMO

Predation by heterotrophic protists drives the emergence of adaptive traits in bacteria, and often these traits lead to altered interactions with hosts and persistence in the environment. Here we studied adaptation of the cholera pathogen, Vibrio cholerae during long-term co-incubation with the protist host, Acanthamoeba castellanii. We determined phenotypic and genotypic changes associated with long-term intra-amoebal host adaptation and how this impacts pathogen survival and fitness. We showed that adaptation to the amoeba host leads to temporal changes in multiple phenotypic traits in V. cholerae that facilitate increased survival and competitive fitness in amoeba. Genome sequencing and mutational analysis revealed that these altered lifestyles were linked to non-synonymous mutations in conserved regions of the flagellar transcriptional regulator, flrA. Additionally, the mutations resulted in enhanced colonisation in zebrafish, establishing a link between adaptation of V. cholerae to amoeba predation and enhanced environmental persistence. Our results show that pressure imposed by amoeba on V. cholerae selects for flrA mutations that serves as a key driver for adaptation. Importantly, this study provides evidence that adaptive traits that evolve in pathogens in response to environmental predatory pressure impact the colonisation of eukaryotic organisms by these pathogens.


Assuntos
Amoeba , Cólera , Vibrio cholerae , Animais , Cólera/microbiologia , Vibrio cholerae/genética , Virulência , Peixe-Zebra
8.
PLoS One ; 16(7): e0254068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214115

RESUMO

Prevalence of toxigenic Vibrio cholerae O1 in aquatic reservoirs in Bangladesh apparently increases coinciding with the occurrence of seasonal cholera epidemics. In between epidemics, these bacteria persist in water mostly as dormant cells, known as viable but non-culturable cells (VBNC), or conditionally viable environmental cells (CVEC), that fail to grow in routine culture. CVEC resuscitate to active cells when enriched in culture medium supplemented with quorum sensing autoinducers CAI-1 or AI-2 which are signal molecules that regulate gene expression dependent on cell density. V. cholerae O1 mutant strains with inactivated cqsS gene encoding the CAI-1 receptor has been shown to overproduce AI-2 that enhance CVEC resuscitation in water samples. Since V. cholerae non-O1 non-O139 (non-cholera-vibrios) are abundant in aquatic ecosystems, we identified and characterized naturally occurring variant strains of V. cholerae non-O1 non-O139 which overproduce AI-2, and monitored their co-occurrence with V. cholerae O1 in water samples. The nucleotide sequence and predicted protein products of the cqsS gene carried by AI-2 overproducing variant strains showed divergence from that of typical V. cholerae O1 or non-O1 strains, and their culture supernatants enhanced resuscitation of CVEC in water samples. Furthermore, prevalence of V. cholerae O1 in the aquatic environment was found to coincide with an increase in AI-2 overproducing non-O1 non-O139 strains. These results suggest a possible role of non-cholera vibrios in the environmental biology of the cholera pathogen, in which non-O1 non-O139 variant strains overproducing AI-2 presumably contribute in resuscitation of the latent pathogen, leading to seasonal cholera epidemics. Importance. Toxigenic Vibrio cholerae which causes seasonal epidemics of cholera persists in aquatic reservoirs in endemic areas. The bacteria mostly exist in a dormant state during inter-epidemic periods, but periodically resuscitate to the active form. The resuscitation is enhanced by signal molecules called autoinducers (AIs). Toxigenic V. cholerae can be recovered from water samples that normally test negative for the organism in conventional culture, by supplementing the culture medium with exogenous AIs. V. cholerae belonging to the non-O1 non-O139 serogroups which do not cause cholera are also abundant in natural waters, and they are capable of producing AIs. In this study we characterized V. cholerae non-O1 non-O139 variant strains which overproduce an autoinducer called AI-2, and found that the abundance of the cholera pathogen in aquatic reservoirs correlates with an increase in the AI-2 overproducing strains. Our results suggest a probable role of these variant strains in the environmental biology and epidemiology of toxigenic V. cholerae, and may lead to novel means for surveillance, prevention and control of cholera.


Assuntos
Microbiologia Ambiental , Variação Genética , Homosserina/análogos & derivados , Vibrio cholerae O1/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Bangladesh , Genoma Bacteriano , Homosserina/genética , Lactonas , Luminescência , Mutação/genética , Prevalência , Microbiologia da Água
9.
Front Microbiol ; 11: 17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32038597

RESUMO

In the aquatic environment, Vibrio spp. interact with many living organisms that can serve as a replication niche, including heterotrophic protists, or protozoa. Protozoa engulf bacteria and package them into phagosomes where the cells are exposed to low pH, antimicrobial peptides, reactive oxygen/nitrogen species, proteolytic enzymes, and low concentrations of essential metal ions such as iron. However, some bacteria can resist these digestive processes. For example, Vibrio cholerae and Vibrio harveyi can resist intracellular digestion. In order to survive intracellularly, bacteria have acquired and/or developed specific factors that help them to resist the unfavorable conditions encountered inside of the phagosomes. Many of these intra-phagosomal factors used to kill and digest bacteria are highly conserved between eukaryotic cells and thus are also expressed by the innate immune system in the gastrointestinal tract as the first line of defense against bacterial pathogens. Since pathogenic bacteria have been shown to be hypervirulent after they have passed through protozoa, the resistance to digestion by protist hosts in their natural environment plays a key role in enhancing the infectious potential of pathogenic Vibrio spp. This review will investigate the current knowledge in interactions of bacteria with protozoa and human host to better understand the mechanisms used by both protozoa and human hosts to kill bacteria and the bacterial response to them.

10.
Nat Microbiol ; 4(12): 2466-2474, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570868

RESUMO

Vibrio cholerae interacts with many organisms in the environment, including heterotrophic protists (protozoa). Several species of protozoa have been reported to release undigested bacteria in expelled food vacuoles (EFVs) when feeding on some pathogens. While the production of EFVs has been reported, their biological role as a vector for the transmission of pathogens remains unknown. Here we report that ciliated protozoa release EFVs containing V. cholerae. The EFVs are stable, the cells inside them are protected from multiple stresses, and large numbers of cells escape when incubated at 37 °C or in the presence of nutrients. We show that OmpU, a major outer membrane protein positively regulated by ToxR, has a role in the production of EFVs. Notably, cells released from EFVs have growth and colonization advantages over planktonic cells both in vitro and in vivo. Our results suggest that EFVs facilitate V. cholerae survival in the environment, enhancing their infectious potential and may contribute to the dissemination of epidemic V. cholerae strains. These results improve our understanding of the mechanisms of persistence and the modes of transmission of V. cholerae and may further apply to other opportunistic pathogens that have been shown to be released by protists in EFVs.


Assuntos
Cólera/microbiologia , Vetores de Doenças , Interações Hospedeiro-Patógeno/fisiologia , Tetrahymena pyriformis/microbiologia , Vacúolos/microbiologia , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/metabolismo , Adesinas Bacterianas/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cólera/parasitologia , Cólera/transmissão , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Temperatura , Fatores de Transcrição , Vacúolos/parasitologia , Vibrio cholerae/genética
11.
PLoS One ; 14(10): e0223226, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31574121

RESUMO

BACKGROUND: Toxigenic Vibrio cholerae resides in aquatic reservoirs of cholera-endemic areas mostly in a dormant form known as conditionally viable environmental cells (CVEC) in which the bacteria remain embedded in an exopolysaccharide matrix, and fail to grow in routine bacteriological culture. The CVEC can be resuscitated by supplementing culture media with either of two autoinducers CAI-1 and AI-2, which are signal molecules controlling quorum sensing, a regulatory network of bacterial gene expression dependent on cell density. This study investigated possible existence of variant strains that overproduce AIs, sufficient to resuscitate CVEC in environmental waters. METHODS: Environmental V. cholerae isolates and Tn insertion mutants of a V. cholerae strain C6706 were screened for production of AIs using bioluminescent reporter strains. Relevant mutations in environmental strains which overproduced AI-2 were characterized by nucleotide sequencing and genetic complementation studies. Effect of AIs produced in culture supernatants of relevant strains on reactivation of CVEC in water was determined by resuscitation assays. RESULTS: Two of 54 environmental V. cholerae isolates were found to overproduce AI-2. Screening of a Tn-insertion library of V. cholerae strain C6706, identified a mutant which overproduced AI-2, and carried Tn insertion in the cqsS gene. Nucleotide sequencing also revealed mutations inactivating the cqsS gene in environmental isolates which overproduced AI-2, and this property was reversed when complemented with a wild type cqsS gene. Culture of river water samples supplemented with spent medium of these mutants resuscitated dormant V. cholerae cells in water. SIGNIFICANCE: V. cholerae strains with inactivated cqsS gene may offer a convenient source of AI-2 in enhanced assays for monitoring bacteriological quality of water. The results also suggest a potential role of naturally occurring cqsS mutants in the environmental biology of V. cholerae. Furthermore, similar phenomenon may have relevance in the ecology of other waterborne bacterial pathogens beyond V. cholerae.


Assuntos
Cólera/genética , Homosserina/análogos & derivados , Cetonas , Vibrio cholerae/genética , Biofilmes , Cólera/epidemiologia , Cólera/microbiologia , Microbiologia Ambiental , Regulação Bacteriana da Expressão Gênica/genética , Homosserina/genética , Humanos , Lactonas , Mutação/genética , Percepção de Quorum/genética , Vibrio cholerae/patogenicidade
12.
Nanomaterials (Basel) ; 9(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514483

RESUMO

Gold clusters protected by 3-MBA ligands (MBA = mercaptobenzoic acid, -SPhCO2H) have attracted recent interest due to their unusual structures and their advantageous ligand-exchange and bioconjugation properties. Azubel et al. first determined the core structure of an Au68-complex, which was estimated to have 32 ligands (3-MBA groups). To explain the exceptional structure-composition and reaction properties of this complex, and its larger homologs, Tero et al. proposed a "dynamic stabilization" via carboxyl O-H--Au interactions. Herein, we report the first results of an integrated liquid chromatography/mass spectrometer (LC/MS) analysis of unfractionated samples of gold/3-MBA clusters, spanning a narrow size range 13.4 to 18.1 kDa. Using high-throughput procedures adapted from bio-macromolecule analyses, we show that integrated capillary high performance liquid chromatography electrospray ionization mass spectrometer (HPLC-ESI-MS), based on aqueous-methanol mobile phases and ion-pairing reverse-phase chromatography, can separate several major components from the nanoclusters mixture that may be difficult to resolve by standard native gel electrophoresis due to their similar size and charge. For each component, one obtains a well-resolved mass spectrum, nearly free of adducts or signs of fragmentation. A consistent set of molecular mass determinations is calculated from detected charge-states tunable from 3- (or lower), to 2+ (or higher). One thus arrives at a series of new compositions (n, p) specific to the Au/3-MBA system. The smallest major component is assigned to the previously unknown (48, 26); the largest one is evidently (67, 30), vs. the anticipated (68, 32). Various explanations for this discrepancy are considered. A prospective is given for the various members of this novel series, along with a summary of the advantages and present limitations of the micro-scale integrated LC/MS approach in characterizing such metallic-core macro-molecules, and their derivatives.

13.
Langmuir ; 35(32): 10610-10617, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31299160

RESUMO

Most applications of aqueous plasmonic gold nanoparticles benefit from control of the core size and shape, control of the nature of the ligand shell, and a simple and widely applicable preparation method. Surface functionalization of such nanoparticles is readily achievable but is restricted to water-soluble ligands. Here we have obtained highly monodisperse and stable smaller aqueous gold nanoparticles (core diameter ∼4.5 nm), prepared from citrate-tannate precursors via ligand exchange with each of three distinct thiolates: 11-mercaptoundecanoic acid, α-R-lipoic acid, and para-mercaptobenzoic acid. These are characterized by UV-vis spectroscopy for plasmonic properties; Fourier transform infrared (FTIR) spectroscopy for ligand-exchange confirmation; X-ray diffractometry for structural analysis; and high-resolution transmission electron microscopy for structure and size determination. Chemical reduction induces a blueshift, maximally +0.02 eV, in the localized surface plasmon resonance band; this is interpreted as an electronic (-) charging of the monolayer-protected cluster (MPC) gold core, corresponding to a -0.5 V change in electrochemical potential.

14.
J Phys Chem Lett ; 10(12): 3307-3311, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31067059

RESUMO

Monolayer-protected clusters (MPCs), typified by the (Au, Ag)-thiolates, share dimensions and masses with aqueous globular proteins (enzymes), yet efficient bioanalytical methods have not proved applicable to MPC analytics. Here we demonstrate that direct facile ESI(+)MS analysis of MPCs succeeds, at the few-picomol level, for aqueous basic amino-terminated thiolates. Specifically, captamino-gold clusters, Au n(SR) p, wherein -R = -(CH2)2N(CH3)2, are prepared quantitatively via a direct one-phase (aq/EtOH) method and are sprayed under weakly acidic conditions to yield intact 6.8 kDa complexes, ( n, p) = (25, 18), with up to 5 H+ adducts, or 34.6 kDa MPCs (144, 60) at charge state z = 8+. These exceed all prior reports of positive charging of MPCs except for those bearing per-cationized (quat) ligands. pH-mediated reversible phase transfer (aqueous to/from DCM-rich phases) are consistent with peripheral exposure of all tertiary amino groups to solutions. This surprising development opens the way to all manner of modifications or extensions, as well as to advanced analyses inspired by those applied to intact biomolecules.

15.
J Phys Chem Lett ; 9(23): 6825-6832, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30399320

RESUMO

Disclosed herein is a method to obtain the ∼300 kDa gold-hexanethiolate compound, extracted from the Faradaurate series of smaller (3) and larger (1) homologues, thereby permitting the first measurement of its distinctive properties by methods including mass spectrometry, optical spectroscopy, electron microscopy, X-ray scattering, and diffraction. The results suggest a monocrystalline metallic core (free of twinning planes) of ∼3.1 nm minimum dimension, which supports a clear plasmonic optical response, along with a diffuse exterior shell. An idealized model to account for this (and smaller) members of the series is proposed based on the completion of a convex core of regular truncated-octahedral (TO) morphology, that is, the TO (5,5) crystallite comprising 1289 sites. The diffuse layer may comprise the 240 S sites (thiolate sulfur headgroups) and 96 Au-adatom sites, giving a total composition (1385,240) and a molar mass of ∼301.0 kDa (90.7% Au). The ∼300 and ∼400 kDa gold compounds contain Au∼1400 and Au∼2000 atoms, respectively.

16.
Sci Rep ; 7(1): 14880, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093571

RESUMO

CRISPR-Cas (clustered regularly interspersed short palindromic repeats-CRISPR-associated proteins) are microbial nuclease systems involved in defense against phages. Bacteria also resist phages by hosting phage-inducible chromosomal islands (PICI) which prevent phage reproduction. Vibrio cholerae which causes cholera epidemics, interacts with numerous phages in the environment and in cholera patients. Although CRISPR-Cas systems are usually carried by bacteria and archea, recently V. cholerae specific ICP1 phages were found to host a CRISPR-Cas system that inactivates PICI-like elements (PLE) in V. cholerae. We analyzed a collection of phages and V. cholerae isolated during seasonal cholera epidemics in Bangladesh, to study the distribution, and recent evolution of the phage-encoded CRISPR-Cas system. Five distinct but related phages carrying the CRISPR-Cas system, and possible CRISPR-Cas negative progenitor phages were identified. Furthermore, CRISPR arrays in the phages were found to have evolved by acquisition of new spacers targeting diverse regions of PLEs carried by the V. cholerae strains, enabling the phages to efficiently grow on PLE positive strains. Our results demonstrate a continuing arms-race involving genetic determinants of phage-resistance in V. cholerae, and the phage-encoded CRISPR-Cas system in the co-evolution of V. cholerae and its phages, presumably fostered by their enhanced interactions during seasonal epidemics of cholera.


Assuntos
Bacteriófagos/genética , Sistemas CRISPR-Cas , Vibrio cholerae/virologia , Bangladesh , Coevolução Biológica , Cólera , Epidemias , Interações entre Hospedeiro e Microrganismos , Vibrio cholerae/genética
17.
PLoS One ; 12(7): e0180838, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700707

RESUMO

METHODS: Phages isolated from environmental waters in Bangladesh were tested for their host specificity towards V. cholerae O1 and O139, and the ability to disperse V. cholerae biofilms formed in the laboratory. Representative phages were further characterized by electron microscopy and whole genome sequencing. Selected phages were then introduced in various combinations to biofilms of toxigenic V. cholerae added to samples of river water, and the dispersion of biofilms as well as the growth kinetics of V. cholerae and the phages were monitored. RESULTS: A phage cocktail composed of three different phages isolated from surface waters in Bangladesh and designated as JSF7, JSF4, and JSF3 could significantly influence the distribution and concentration of the active planktonic form and biofilm associated form of toxigenic V. cholerae in water. While JSF7 showed a biofilm degrading activity and dispersed cells from both V. cholerae O1 and O139 derived biofilms thus increasing the concentration of planktonic V. cholerae in water, JSF4 and JSF3 showed strong bactericidal activity against V. cholerae O1 and O139 respectively. A mixture of all three phages could effectively reduce both biofilm-associated and planktonic V. cholerae in river water microcosms. SIGNIFICANCE: Besides potential applicability in phage-mediated control of cholera, our results have relevance in appreciating possible intricate role of diverse environmental phages in the epidemiology of the disease, since both biofilms and phages influence the prevalence and infectivity of V. cholerae in a variety of ways.


Assuntos
Bacteriófagos/fisiologia , Biofilmes/crescimento & desenvolvimento , Plâncton/virologia , Vibrio cholerae/virologia , Cólera/epidemiologia , Vibrio cholerae O1/virologia , Vibrio cholerae O139/virologia , Microbiologia da Água
18.
Sci Rep ; 6: 37956, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892495

RESUMO

Predation by bacteriophages can significantly influence the population structure of bacterial communities. Vibrio cholerae the causative agent of cholera epidemics interacts with numerous phages in the aquatic ecosystem, and in the intestine of cholera patients. Seasonal epidemics of cholera reportedly collapse due to predation of the pathogen by phages. However, it is not clear how sufficient number of the bacteria survive to seed the environment in the subsequent epidemic season. We found that bacterial cell density-dependent gene expression termed "quorum sensing" which is regulated by signal molecules called autoinducers (AIs) can protect V. cholerae against predatory phages. V. cholerae mutant strains carrying inactivated AI synthase genes were significantly more susceptible to multiple phages compared to the parent bacteria. Likewise when mixed cultures of phage and bacteria were supplemented with exogenous autoinducers CAI-1 or AI-2 produced by recombinant strains carrying cloned AI synthase genes, increased survival of V. cholerae and a decrease in phage titer was observed. Mutational analyses suggested that the observed effects of autoinducers are mediated in part through the quorum sensing-dependent production of haemaglutinin protease, and partly through downregulation of phage receptors. These results have implication in developing strategies for phage mediated control of cholera.


Assuntos
Bacteriófagos/patogenicidade , Percepção de Quorum/fisiologia , Vibrio cholerae/virologia , Aglutinação , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Homosserina/análogos & derivados , Homosserina/metabolismo , Soros Imunes , Cetonas/metabolismo , Lactonas/metabolismo , Mutação , Antígenos O/genética , Antígenos O/imunologia , Antígenos O/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Percepção de Quorum/genética , Coelhos , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...