Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Cell ; : e202300069, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679788

RESUMO

Polycystic ovary syndrome or PCOS is an endocrine disorder in women of reproductive age. It is a diversified multi factorial disorder and diagnosis is very complicated because of its overlapping symptoms some of which are irregular menstrual cycle, acne in face, excess level of androgen (AE), insulin resistance, obesity, cardiovascular disease, mood disorder and type 2 diabetes (T2DM). PCOS may be caused by hormonal imbalance, genetic and epigenetic vulnerability, hypothalamic and ovarian troubles. PCOS is essentially hyperandrogenimia with oligo-anovulation. This review explains the abnormal regulation of autophagy related genes and proteins in different cells at various stages which leads to the genesis of PCOS. During nutrient starvation cells face stress condition, which it tries to overcome by activating its macroautophagy mechanism and by degrading the cytoplasmic material. This provides energy to the cell facilitating its survival. Downregulation of autophagy related genes in endometria has been observed in PCOS women. PCOS can be managed by maintaining proper lifestyle and medical treatment. Healthy meals and regular exercise can prevent the excessive weight and also reduce the PCOS complications. Medicines such as metformin, clomiphene, and the oral contraceptive pill can also balance the hormonal level. The imbalance in regulation of autophagy genes has been discussed with correlation to PCOS. The different management strategies for PCOS have also been summarized.

2.
J Trace Elem Med Biol ; 84: 127429, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38493666

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a growing public health problem. Several clinical studies have shown a potentially protective effect of selenium (Se), but the reports are inconsistent. The objective of the study was to examine the evidence for relation between serum/tissue Se status and CRC. METHOD AND MATERIALS: In this Systematic Review and Meta-Analysis, we searched Cochrane Library, EBSCOhost, EMBASE, ProQuest, PubMed/MEDLINE, Scopus, and Web of Science for studies reporting serum/plasma/whole blood/tissue Se concentrations in CRC patients and controls for articles published till August 2023. Meta-analysis was performed, and study quality, heterogeneity, and small study effects were assessed. Based on a random effects model, summary mean differences in serum levels of Se between CRC patients and healthy controls, and Se levels between malignant and matched non-malignant tissue specimens were assessed. RESULTS: After initial screening, a total of 24 studies (18 serum and 6 tissue studies) with a pooled total of 2640 participants were included in the meta-analysis. CRC patients had significantly lower serum Se levels than healthy controls, being the difference between the two equal to 3.73 µg/dl (95% CI: 6.85-0.61). However, the heterogeneity was very high, I2= 99% (p < 0.01). Our meta-analysis showed higher Se levels in CRC cancerous specimens than in matched healthy colon tissue: the increase was equal to 0.07 µg/g wet tissue weight (95% CI: 0.06-0.09; p= 0.02). CONCLUSIONS: CRC patients have lower serum and higher colon cancerous tissue Se levels. Some factors, such as Se levels in different tumor grades of CRC need to be further considered for a more conclusive association between Se levels and risk of CRC.

3.
J Genet Eng Biotechnol ; 22(1): 100346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494259

RESUMO

BACKGROUND: As the world settles down from the COVID-19 pandemic, many countries are faced with an unexpected outbreak of monkeypox infection. Monkeypox is a zoonotic disease caused by monkeypox virus (MPXV), which is an enveloped, double stranded DNA virus belonging to the Poxviridae family. Presently, we construct and analyze the phylo-geo-network and the corresponding haplogroups. Presently, we performed the haplogroup analysis with their defining mutations and phylogenetic lineage study along with geographical distributions with the aim to understand the evolutionary path of the MPXV across the world. RESULTS: Information about 719 full length genomes of MPXV were collected from GISAID repository and the sequences extracted from NCBI. The alignment of 719 MPXV genomes and their subsequent analysis revealed a total of 1530 segregating sites of which 330 were parsimony informative (PI) sites. The variations had a positive value of Tajima's D statistic indicating some mutations being prevalent and hence balancing selection. A total of 39 haplogroups were observed in the phylo-geo-network and their defining mutations along with the evolutionary path has been discussed. The phylo-geo-network revealed the nodal haplogroup is represented by GISAID ID 13889450, haplogroup A1, an isolate from Germany, having a total of 296 identical sequences in the study incident across 22 countries. The localized evolution is highlighted by country specific sequences and haplogroups. USA had a total of 58 genomes and 13 haplogroups as compared to Peru (89 genomes, 7 haplogroups) and Germany (26 genomes, 6 haplogroups). CONCLUSIONS: The evolution of MPXV can be happening in a localized manner and hence accumulation of variations in the MPXV genomes needs to be monitored in order to be prepared for any possible threats.

4.
Int J Biol Macromol ; 264(Pt 1): 130388, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417756

RESUMO

Among the major Surface Exposed Colonization Proteins (SECPs) of Campylobacter jejuni (C. jejuni), Jejuni lipoprotein A (JlpA) plays a crucial role in host cell adhesion specifically by binding to the N-terminal domain of the human heat shock protein 90α (Hsp90α-NTD). Although the JlpA binding to Hsp90α activates NF-κB and p38 MAP kinase pathways, the underlying mechanism of JlpA association with the cellular receptor remains unclear. To this end, we predicted two potential receptor binding sites within the C-terminal domain of JlpA: one spanning from amino acid residues Q332-A354 and the other from S258-T295; however, the latter exhibited weaker binding. To assess the functional attributes of these predicted sequences, we generated two JlpA mutants (JlpAΔ1: S258-T295; JlpAΔ2: Q332-A354) and assessed the Hsp90α-binding affinity-kinetics by in vitro and ex vivo experiments. Our findings confirmed that the residues Q332-A354 are of greater importance in host cell adhesion with a measurable impact on cellular responses. Further, thermal denaturation by circular dichroism (CD) confirmed that the reduced binding affinity of the JlpAΔ2 to Hsp90α is not associated with protein folding or stability. Together, this study provides a possible framework for determining the molecular function of designing rational inhibitors efficiently targeting JlpA.


Assuntos
Campylobacter jejuni , Lipoproteína(a) , Humanos , Lipoproteína(a)/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Ligantes , Proteínas de Choque Térmico/metabolismo , NF-kappa B/metabolismo
5.
J Cell Biochem ; 125(2): e30515, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38213080

RESUMO

Vascular endothelial growth factor (VEGF) mediated angiogenesis is crucial for tumor progression. Isoforms of VEGF bind to different VEGF receptors (VEGFRs) to initiate angiogenesis specific cellular signaling. Inhibitors that target both the receptors and ligands are in clinical use to impede angiogenesis. Bevacizumab, a monoclonal antibody (mAb) approved by the Food and Drug Administration (FDA), binds in the VEGF receptor binding domain (RBD) of all soluble isoforms of VEGF and inhibits the VEGF-VEGFR interaction. Bevacizumab is also used in combination with other chemotherapeutic agents for a better therapeutic outcome. Understanding the intricate polymorphic character of VEGFA gene and the influence of missense or nonsynonymous mutations in the form of nonsynonymous polymorphisms (nsSNPs) on RBD of VEGF may aid in increasing the efficacy of this drug. This study has identified 18 potential nsSNPs in VEGFA gene that affect the VEGF RBD structure and alter its binding pattern to bevacizumab. The mutated RBDs, modeled using trRosetta, in addition to the changed pattern of secondary structure, post translational modification and stability compared to the wild type, have shown contrasting binding affinity and molecular interaction pattern with bevacizumab. Molecular docking analysis by ClusPro and visualization using PyMol and PDBsum tools have detected 17 nsSNPs with decreased binding affinity to bevacizumab and therefore may impact the treatment efficacy. Whereas VEGF RBD expressed due to rs1267535717 (R229H) nsSNP of VEGFA has increased affinity to the mAb. This study suggests that genetic characterization of VEGFA before bevacizumab mediated cancer treatment is essential in predicting the appropriate efficacy of the drug, as the treatment efficiency may vary at individual level.


Assuntos
Anticorpos Monoclonais Humanizados , Fator A de Crescimento do Endotélio Vascular , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Anticorpos Monoclonais/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Isoformas de Proteínas , Mutação , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico
6.
Curr Pharm Des ; 29(36): 2891-2901, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38018194

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19), which first appeared in December 2019. Angiotensin I converting enzyme 2 (ACE2) receptor, present on the host cells, interacts with the receptor binding domain (RBD) of spike (S) protein of SARS-CoV-2 and facilitates the viral entry into host cells. METHODS: Non-synonymous single nucleotide polymorphisms (nsSNPs) in the ACE2 gene may have an impact on the protein's stability and its function. The deleterious or harmful nsSNPs of the ACE2 gene that can change the strength as well as the pattern of interaction with the RBD of S protein were selected for this study. RESULTS: The ACE2:RBD interactions were analyzed by protein-protein docking study. The missense mutations A242V, R708W, G405E, D292N, Y633C, F308L, and G405E in ACE2 receptor were found to interact with RBD of Omicron subvariants with stronger binding affinity. Among the other selected nsSNPs of human ACE2 (hACE2), R768W, Y654S, F588S, R710C, R710C, A191P, and R710C were found to have lower binding affinity for RBD of Omicron subvariants. CONCLUSION: The findings of this study suggest that the nsSNPs present in the human ACE2 gene alter the structure and function of the protein and, consequently, the susceptibility to Omicron subvariants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Enzima de Conversão de Angiotensina 2/genética , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica/genética , Mutação
7.
J Genet Eng Biotechnol ; 21(1): 140, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999808

RESUMO

BACKGROUND: Microsatellites or simple sequence repeats (SSR) consist of 1-6 nucleotide motifs of DNA or RNA which are ubiquitously present in tandem repeated sequences across genome in viruses: prokaryotes and eukaryotes. They may be localized to both the coding and non-coding regions. SSRs play an important role in replication, gene regulation, transcription, and protein function. The Caliciviridae (CLV) family of viruses have ss-RNA, non-enveloped, icosahedral symmetry 27-35 nm in diameter in size. The size of the genome lies between 6.4 and 8.6 kb. RESULTS: The incidence, composition, diversity, complexity, and host range of different microsatellites in 62 representatives of the family of Caliciviridae were systematically analyzed. The full-length genome sequences were assessed from NCBI ( https://www.ncbi.nlm.nih.gov ), and microsatellites were extracted through MISA software. The average genome size is about 7538 bp ranging from 6273 (CLV61) to 8798 (CLV47) bp. The average GC content of the genomes was ~ 51%. There are a total of 1317 SSRs and 53 cSSRs in the studied genomes. CLV 41 and CLV 49 contain the highest and lowest value of SSRs with 32 and 10 respectively, while CLV16 had maximum cSSR incidence of 4. There were 29 species which do not contain any cSSR. The incidence of mono-, di-, and tri-nucleotide SSRs was 219, 884, and 206, respectively. The most prevalent mono-, di-, and tri-nucleotide repeat motifs were "C" (126 SSRs), AC/CA (240 SSRs), and TGA/ACT (23 SSRs), respectively. Most of the SSRs and cSSRs are biased toward the coding region with a minimum of ~ 90% incident SSRs in the genomes' coding region. Viruses with similar host are found close to each other on the phylogenetic tree suggesting virus host being one of the driving forces for their evolution. CONCLUSIONS: The Caliciviridae genomes does not conform to any pattern of SSR signature in terms of incidence, composition, and localization. This unique property of SSR plays an important role in viral evolution. Clustering of similar host in the phylogenetic tree is the evidence of the uniqueness of SSR signature.

9.
Pharmacol Rep ; 75(4): 907-922, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37440106

RESUMO

Natural compounds originating from plants offer a wide range of pharmacological potential and have traditionally been used to treat a wide range of diseases including cancer. Tanshinone IIA (Tan IIA), a bioactive molecule found in the roots of the Traditional Chinese Medicine (TCM) herb Salvia miltiorrhiza, has been shown to have remarkable anticancer properties through several mechanisms, such as inhibition of tumor cell growth and proliferation, metastasis, invasion, and angiogenesis, as well as induction of apoptosis and autophagy. It has demonstrated excellent anticancer efficacy against cell lines from breast, cervical, colorectal, gastric, lung, and prostate cancer by modulating multiple signaling pathways including PI3K/Akt, JAK/STAT, IGF-1R, and Bcl-2-Caspase pathways. This review focuses on the role of Tan IIA in the treatment of various cancers, as well as the underlying molecular mechanisms.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Masculino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Abietanos/farmacologia , Transdução de Sinais , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
10.
Comp Immunol Microbiol Infect Dis ; 98: 102002, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37329681

RESUMO

This study is an attempt to extract and analyse the microsatellites or simple sequence repeats (SSRs) from the genomes of eight species of the genus Orthopoxvirus. The average size of genomes included in the study was 205 kb while the GC% was 33% for all but one. A total of 10,584 SSRs and 854 cSSRs were observed. POX2 with the largest genome of 224.499 kb had maximum of 1493 SSRs and 121 cSSRs (compound SSR) while POX7 with the smallest genome of 185.578 kb had minimum incident SSRs and cSSRs at 1181 and 96, respectively. There was significant correlation between genome size and SSR incidence. Di-nucleotide repeats were the most prevalent (57.47%) followed by mono- at 33% and tri- at 8.6%. Mono-nucleotide SSRs were predominantly T (51%) and A (48.4%). A majority of 80.32% SSRs were in the coding region. The three most similar genomes as per heat map POX1, POX7 and POX5 (93% similarity) are adjacent to one another in the phylogenetic tree. Ankyrin/Ankyrin like protein and Kelch protein which are associated with host determination and divergence have the highest SSR density in almost all studied viruses. Thus, SSRs are involved in genome evolution and host determination of viruses.


Assuntos
Orthopoxvirus , Vírus , Animais , Monkeypox virus/genética , Orthopoxvirus/genética , Filogenia , Biologia de Sistemas , Anquirinas/genética , Repetições de Microssatélites/genética
11.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047624

RESUMO

Cancer development is associated with the deregulation of various cell signaling pathways brought on by certain genetic and epigenetic alterations. Therefore, novel therapeutic strategies have been developed to target those pathways. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) pathway is one major deregulated pathway in various types of cancer. Several anticancer drug candidates are currently being investigated in preclinical and/or clinical studies to target this pathway. Natural bioactive compounds provide an excellent source for anticancer drug development. Curcumin and plumbagin are two potential anticancer compounds that have been shown to target the PI3K/Akt/mTOR pathway individually. However, their combinatorial effect on cancer cells is still unknown. This study aims to investigate the synergistic effect of these two compounds on the PI3K/Akt/mTOR pathway by employing a sequential molecular docking and molecular dynamics (MD) analysis. An increase in binding affinity and a decrease in inhibition constant have been observed when curcumin and plumbagin were subjected to sequential docking against the key proteins PI3K, Akt, and mTOR. The MD simulations and molecular mechanics combined with generalized Born surface area (MM-GBSA) analyses validated the target proteins' more stable conformation when interacting with the curcumin and plumbagin combination. This indicates the synergistic role of curcumin and plumbagin against cancer cells and the possible dose advantage when used in combination. The findings of this study pave the way for further investigation of their combinatorial effect on cancer cells in vitro and in vivo models.


Assuntos
Curcumina , Neoplasias , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Curcumina/farmacologia , Simulação de Acoplamento Molecular , Serina-Treonina Quinases TOR/metabolismo , Neoplasias/tratamento farmacológico
12.
Funct Integr Genomics ; 23(1): 36, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36631570

RESUMO

In comparison to previously known severe respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the newly emerged Omicron (B.1.1.529) variant shows higher infectivity in humans. Exceptionally high infectivity of this variant raises concern of its possible transmission via other intermediate hosts. The SARS-CoV-2 infectivity is established via the association of spike (S) protein receptor binding domain (RBD) with host angiotensin I converting enzyme 2 (hACE2) receptor. In the course of this study, we investigated the interaction between Omicron S protein RBD with the ACE2 receptor of 143 mammalian hosts including human by protein-protein interaction analysis. The goal of this study was to forecast the likelihood that the virus may infect other mammalian species that coexist with or are close to humans in the household, rural, agricultural, or zoological environments. The Omicron RBD was found to interact with higher binding affinity with the ACE2 receptor of 122 mammalian hosts via different amino acid residues from the human ACE2 (hACE2). The rat (Rattus rattus) ACE2 was found to show the strongest interaction with Omicron RBD with a binding affinity of -1393.6 kcal/mol. These distinct strong binding affinity of RBD of Omicron with host ACE2 indicates a greater potential of new host transmissibility and infection via intermediate hosts. Though expected but the phylogenetic position of the mammalian species may not dictate the Omicron RBD binding to the host ACE2 receptor suggesting an involvement of multiple factors in guiding host divergence of the variant.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Transmissão de Doença Infecciosa , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Ratos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Mamíferos , Mutação , Filogenia , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
Gene ; 851: 147037, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36368571

RESUMO

Microsatellites or Simple Sequence Repeats (SSRs) are short motif repeat sequences constituting the most hypervariable regions of genomes. Present study extracts and analyzes the SSRs from genomes of 21 virophages. Genomic sequences were retrieved from NCBI and the microsatellite data was extracted through MISA web server. Phylogenetic analysis was performed by using MAFFT and MEGAX as per standardized protocols. The virophages have a circular/linear ds DNA genome of ~17-30 kb size. The GC% of genomes ranged from 26.8 (PSAV13) to 51.1 (PSAV12). A total of 3664 SSRs and 488 cSSR were observed with an average incidence of 174 and 23 respectively. The total SSR incidence in a genome ranged from 120 (PSAV19) to 264 (PSAV14). The cSSR (compound SSR) incidence ranged from 8 (PSAV12) to 47 (PSAV14). Mono-nucleotide repeats are the most incident microsatellites (1129 SSRs) followed by di-nucleotide (1036 SSRs) and tri-nucleotide repeats (368 SSRs). However, the same is not true for individual genomes. There are 14, 16 and 17 genomes which have no incidence of tetra-, penta- and hexa-nucleotide repeats respectively. Mono 'A' repeats having the maximum representation (average ~33 per genome) in mono-nucleotide repeats. For the di-nucleotide repeats, AT/TA motif had the highest frequency (average ~30) distantly followed by AG/GA; and CT/TC (average 5.6 & 5.5 respectively). A total of 1946 SSRs (76%) were found in the coding region. All genomes had a higher SSR density in non-coding as compared to the coding region. There are fifteen genomes which have at least one gene with no SSR. A total of 41 cSSRs with incidence across minimum of two virophages was observed. There were 12 cSSRs which had multiple presence within the same genome. The heat map of the genomes on one hand corroborates the phylogenetic tree with similar sequences (PSAV2, PSAV5, PSAV6, PSAV17 and PSAV18) being positioned together in the phylogenetic analysis while on the other hand it also highlights the diversity of the studied sequences. The conservation of cSSRs across multiple virophages highlights their potential as biomarkers.


Assuntos
Virófagos , Vírus , Virófagos/genética , Filogenia , Genoma Viral , Vírus/genética , Repetições de Microssatélites/genética
14.
Neurosci Biobehav Rev ; 144: 104973, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435391

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease caused by the deposition of amyloid ß (Aß) fibrils forming extracellular plaques and the development of neurofibrillary tangles (NFT) of intracellular hyperphosphorylated tau protein. Currently, the AD treatments focus on improving cognitive and behavioral symptoms and have limited success. It is imperative to develop novel treatment approaches that can control/inhibit AD progression, especially in the elderly population. Immunotherapy provides a promising and safe treatment option for AD by boosting the patient's immune system. The minimum immune surveillance in the immune-privileged brain, however, makes immunotherapy for AD a challenging endeavor. Therefore, the success of AD immunotherapy depends mainly on the strategy by which therapeutics is delivered to the brain rather than its efficacy. The blood-brain barrier (BBB) is a major obstacle to therapeutic delivery into the brain microenvironment. Various nano-formulations have been exploited to improve the efficacy of AD immunotherapy. In this review, the applications of different types of nano-formulations in augmenting AD immunotherapy have been discussed.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Idoso , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Nanomedicina , Proteínas tau/metabolismo , Imunoterapia
15.
Cells ; 11(20)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36291071

RESUMO

Autophagy plays an intricate role in paradigmatic human pathologies such as cancer, and neurodegenerative, cardiovascular, and autoimmune disorders. Autophagy regulation is performed by a set of autophagy-related (ATG) genes, first recognized in yeast genome and subsequently identified in other species, including humans. Several other genes have been identified to be involved in the process of autophagy either directly or indirectly. Studying the codon usage bias (CUB) of genes is crucial for understanding their genome biology and molecular evolution. Here, we examined the usage pattern of nucleotide and synonymous codons and the influence of evolutionary forces in genes involved in human autophagy. The coding sequences (CDS) of the protein coding human autophagy genes were retrieved from the NCBI nucleotide database and analyzed using various web tools and software to understand their nucleotide composition and codon usage pattern. The effective number of codons (ENC) in all genes involved in human autophagy ranges between 33.26 and 54.6 with a mean value of 45.05, indicating an overall low CUB. The nucleotide composition analysis of the autophagy genes revealed that the genes were marginally rich in GC content that significantly influenced the codon usage pattern. The relative synonymous codon usage (RSCU) revealed 3 over-represented and 10 under-represented codons. Both natural selection and mutational pressure were the key forces influencing the codon usage pattern of the genes involved in human autophagy.


Assuntos
Autofagia , Uso do Códon , Seleção Genética , Humanos , Autofagia/genética , Códon/genética , Uso do Códon/genética , Nucleotídeos/genética
16.
Front Chem ; 10: 970193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186592

RESUMO

The biogenic approach of synthesizing metal nanoparticles is an exciting and interesting research area with a wide range of applications. The present study reports a simple, convenient, low-cost method for synthesizing magnesium oxide nanoparticles (MgONPs) from pumpkin seed extracts and their anticancer efficacy against ovarian teratocarcinoma cell line (PA-1). The characteristic features of biogenic MgONPs were assessed by UV-visible spectrophotometry (UV-vis), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The formation of spherical NPs with an average size of 100 nm was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, MgONPs exhibit considerable cytotoxicity with an IC50 dose of 12.5 µg/ml. A dose-dependent rise in the induction of apoptosis, ROS formation, and inhibition in the migration of PA-1 cells was observed up to 15 µg/ml concentration, reflecting their significant anticancer potential against ovarian teratocarcinoma cell line. However, additional work, especially in different in vitro and in vivo models, is recommended to find out their real potential before this environment-friendly and cost-effective nanoformulation could be exploited for the benefit of humankind.

17.
Molecules ; 27(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956989

RESUMO

Cancer cells change their glucose and glutamine (GLU) metabolism to obtain the energy required to continue growing. Glutaminase (GLS) plays a crucial role in promoting cell metabolism for cancer cell growth; targeting GLU metabolism by inhibiting GLS has attracted interest as a potential cancer management strategy. Herein, we employed a sequential screening of traditional Chinese medicine (TCM) database followed by drug-likeness and molecular dynamics simulations against the active site of GLS. We report 12 potent compounds after screening the TCM database against GLS, followed by a drug-likeness filter with Lipinski and Veber rule criteria. Among them, ZINC03978829 and ZINC32296657 were found to have higher binding energy (BE) values than the control compound 6-Diazo-5-Oxo-L-Norleucine, with BEs of -9.3 and -9.7 kcal/mol, respectively, compared to the BE of 6-Diazo-5-Oxo-L-Norleucine (-4.7 kcal/mol) with GLS. Molecular dynamics simulations were used to evaluate the results further, and a 100 ns MD simulation revealed that the hits form stable complexes with GLS and formed 2-5 hydrogen bond interactions. This study indicates that these hits might be employed as GLS inhibitors in the battle against cancer. However, more laboratory tests are a prerequisite to optimize them as GLS inhibitors.


Assuntos
Glutaminase , Neoplasias , Diazo-Oxo-Norleucina , Detecção Precoce de Câncer , Glutaminase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Processos Neoplásicos
18.
EXCLI J ; 21: 610-620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651657

RESUMO

The newly identified Omicron (B.1.1.529) variant of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has steered concerns across the world due to the possession of a large number of mutations leading to high infectivity and vaccine escape potential. The Omicron variant houses 32 mutations in spike (S) protein alone. The viral infectivity is determined mainly by the ability of S protein Receptor Binding Domain (RBD) to bind to the human Angiotensin I Converting Enzyme 2 (hACE2) receptor. In this paper, the interaction of the RBDs of SARS-CoV-2 variants with hACE2 was analyzed by using protein-protein docking and compared with the novel Omicron variant. Our findings reveal that the Omicron RBD interacts strongly with hACE2 receptor via unique amino acid residues as compared to the Wuhan and many other variants. However, the interacting residues of RBD are found to be the same in Lamda (C.37) variant. This unique binding of Omicron RBD with hACE2 suggests an increased potential of infectivity and vaccine evasion potential of the new variant. The evolutionary drive of the SARS-CoV-2 may not be exclusively driven by RBD variants but surely provides for the platform for emergence of new variants.

19.
Artigo em Inglês | MEDLINE | ID: mdl-35368755

RESUMO

Poly (ADP-ribose) polymerase-1 (PARP-1) has been recognized as a prospective target for the development of novel cancer therapeutics. Several PARP-1 inhibitors are currently being considered for anticancer drug development and clinical investigation. Lately, natural compounds seem to be excellent alternative drug candidates for cancer treatment. Rauwolfia serpentina is a medicinal plant traditionally used in Indian subcontinents to treat various diseases. This study has been designed to identify the bioactive compounds derived from R. serpentina for possible binding and inhibition of PARP-1 using the molecular docking approach. Thirteen compounds were found to interact with the target with a binding affinity greater than the value of -9.0 kcal/mol. After screening the physicochemical properties, only 5 ligands (ajmalicine, yohimbine, isorauhimbine, rauwolscine, and 1,2-dihydrovomilenine) were found to obey all the parameters of Lipinski's rule of five, showed maximum drug-likeness, and possess no significant toxicity. These ligands displayed strong interactions with target PARP-1 via several hydrogen bonds and hydrophobic interactions. Therefore, these identified compounds derived from R. serpentina can be considered for drug development against cancer-targeting PARP-1.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35198035

RESUMO

Angiogenesis plays a critical role in tumorigenesis as it provides the necessary blood supply to the newly grown solid tumor. It helps maintain the tumor microenvironment, promotes tumor development, progression, and metastasis. The vascular epithelial growth factor (VEGF), interacting with the tyrosine kinase receptor VEGFR-2 on endothelial cells, exerts its proangiogenic activity. Hence, targeting the VEGFR-2 signaling is considered a promising strategy to inhibit angiogenesis and thus cancer treatment. This study aims to identify the bioactive compounds derived from the medicinal herb Rauwolfia serpentina that effectively binds with VEGFR-2. The bioactive compounds of R. serpentina were first screened for their physicochemical properties using the DataWarrior program (version 5.5.0). Finally, 17 compounds that obeyed Lipinski's rule of five and showed good drug-likeness were selected for molecular docking studies. Molecular docking results showed that the ligands ajmalicidine, 1, 2-dihydrovomilenine, rauwolscine, yohimbine, ajmaline, and papaverine interact strongly with the target VEGFR-2 receptor. Hydrogen bonds and hydrophobic interactions stabilized the interactions of these compounds with VEGFR-2. These compounds showed favourable drug-like properties and possess no significant toxicity. Therefore, the findings of this study indicate that the compounds derived from R. serpentina can be considered for the development of antiangiogenic drug candidates by targeting VEGFR-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...