Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1234420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577372

RESUMO

Pseudomonas aeruginosa TBCF10839 is a highly virulent strain that can persist and replicate in human neutrophils. Screening of a signature-tagged mutagenesis (STM) TBCF10839 transposon library in phagocytosis tests identified a mutant that carried the transposon in the VirB4 homolog 5PG21 of an integrative and conjugative element (ICE)-associated type IV secretion system of the pKLC102 subtype. 5P21 TBCF10839 insertion mutants were deficient in metabolic versatility, secretion, quorum sensing, and virulence. The mutants were efficiently killed in phagocytosis tests in vitro and were avirulent in an acute murine airway infection model in vivo. The inactivation of 5PG21 silenced the rhl, las, and pqs operons and the gene expression for the synthesis of hydrogen cyanide, the antimetabolite l-2-amino-4-methoxy-trans-3-butenoic acid, and the H2- and H3-type VI secretion systems and their associated effectors. The mutants were impaired in the utilization of carbon sources and stored compounds that are not funneled into intermediary metabolism. This showcase demonstrates that a single gene of the mobile accessory genome can become an essential element to operate the core genome-encoded features of metabolism and virulence.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Camundongos , Humanos , Virulência/genética , Pseudomonas aeruginosa/metabolismo , Adenosina Trifosfatases , Mutagênese , Elementos de DNA Transponíveis , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Pseudomonas/genética
2.
Environ Microbiol ; 15(1): 191-210, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22882573

RESUMO

Microevolution of closely related Pseudomonas aeruginosa was compared in the clone TB strains TBCF10839 and TBCF121838 which had been isolated from two unrelated individuals with cystic fibrosis who had acquired clone TB during a local outbreak. Compared with the strain PAO1 reference sequence the two clone TB genomes shared 23 155 nucleotide exchanges, 32 out-of-frame indels in the coding region and another repertoire of replacement and genomic islands such as PAGI-1, PAGI-2, PAGI-5, LESGI-1 and LES-prophage 4. Only TBCF121838 carried a genomic island known from Ralstonia pickettii. Six of the seven strain-specific sequence variations in the core genome were detected in genes affecting motility, biofilm formation or virulence, i.e. non-synonymous nucleotide substitutions in mexS, PA3729, PA5017, mifR, a frameshift mutation in pilF (TBCF121838) and an intragenic deletion in pilQ (TBCF10839). Despite their almost identical genome sequence the two strains differed strongly from each other in transcriptome and metabolome profiles, mucin adherence and phagocytosis assays. TBCF121838 was susceptible to killing by neutrophils, but TBCF10839 could grow in leucocytes. Microevolution in P. aeruginosa apparently can generate novel complex traits by few or even single mutations provided that predisposing mutational events had occurred before in the clonal lineage.


Assuntos
Fibrose Cística/microbiologia , Variação Genética , Genoma Bacteriano/genética , Metaboloma , Proteoma , Pseudomonas aeruginosa , Transcriptoma , Substituição de Aminoácidos , Ilhas Genômicas , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade
3.
Environ Microbiol ; 12(6): 1734-47, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20553553

RESUMO

In addition to transcriptome and proteome studies, metabolome analysis represents a third complementary approach to identify metabolic pathways and adaptation processes. In order to elucidate basic principles of metabolic versatility of Pseudomonas aeruginosa, we investigated the metabolome profiles of two genetically and morphologically divergent strains, the reference strain PAO1 and the mucoid clinical isolate TBCF10839 in exponential growth and stationary phase in six different carbon sources (cadaverine, casamino acids, citrate, glucose, succinate and tryptone). Both strains exhibited strong similarities in mode of growth; the metabolite patterns were mainly defined by the growth condition. Besides this adaptive response, a basic core metabolism shapes the P. aeruginosa metabolome, independent of growth phase, carbon source and genetic background. This core metabolism includes pathways related to the central energy and amino acid metabolism. These consistently utilized metabolic pathways are closely related to glutamate which represents a dominant metabolite in all conditions analysed. In nutrient-depleted media of stationary phase cultures, P. aeruginosa maintains a specific repertoire of metabolic pathways that are related to the carbon source formerly available. This specified adaptation strategy combined with the invariant basic core metabolism may represent a fundamental requirement for the metabolic versatility of this organism.


Assuntos
Adaptação Fisiológica , Meio Ambiente , Metabolômica , Pseudomonas aeruginosa , Aminoácidos/metabolismo , Carbono/metabolismo , Análise por Conglomerados , Meios de Cultura/química , Humanos , Peptonas/metabolismo , Análise de Componente Principal , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais/fisiologia , Succinatos/metabolismo
4.
Mol Microbiol ; 71(3): 730-47, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19054330

RESUMO

Polymorphonuclear neutrophils are the most important mammalian host defence cells against infections with Pseudomonas aeruginosa. Screening of a signature tagged mutagenesis library of the non-piliated P. aeruginosa strain TBCF10839 uncovered that transposon inactivation of its pilY1 gene rendered the bacterium more resistant against killing by neutrophils than the wild type and any other of the more than 3000 tested mutants. Inactivation of pilY1 led to the loss of twitching motility in twitching-proficient wild-type PA14 and PAO1 strains, predisposed to autolysis and impaired the secretion of quinolones and pyocyanin, but on the other hand promoted growth in stationary phase and bacterial survival in murine airway infection models. The PilY1 population consisted of a major full-length and a minor shorter PilY1* isoform. PilY1* was detectable in small extracellular quinolone-positive aggregates, but not in the pilus. P. aeruginosa PilY1 is not an adhesin on the pilus tip, but assists in pilus biogenesis, twitching motility, secretion of secondary metabolites and in the control of cell density in the bacterial population.


Assuntos
Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Animais , Transporte Biológico , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Feminino , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Genes Bacterianos , Camundongos , Camundongos Endogâmicos C3H , Mutagênese , Neutrófilos/microbiologia , Fenazinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Quinolinas/metabolismo , Infecções Respiratórias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...