Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895308

RESUMO

BACKGROUND: While the amygdala receives early tau deposition in Alzheimer's disease (AD) and is involved in social and emotional processing, the relationship between amygdalar tau and early neuropsychiatric symptoms in AD is unknown. We sought to determine whether focal tau binding in the amygdala and abnormal amygdalar connectivity were detectable in a preclinical AD cohort and identify relationships between these and self-reported mood symptoms. METHODS: We examined n=598 individuals (n=347 amyloid-positive (58% female), n=251 amyloid-negative (62% female); subset into tau PET and fMRI cohorts) from the A4 Study. In our tau PET cohort, we used amygdalar segmentations to examine representative nuclei from three functional divisions of the amygdala. We analyzed between-group differences in division-specific tau binding in the amygdala in preclinical AD. We conducted seed-based functional connectivity analyses from each division in the fMRI cohort. Finally, we conducted exploratory post-hoc correlation analyses between neuroimaging biomarkers of interest and anxiety and depression scores. RESULTS: Amyloid-positive individuals demonstrated increased tau binding in medial and lateral amygdala (F(4,442)=14.61, p=0.00045; F(4,442)=5.83, p=0.024, respectively). Across amygdalar divisions, amyloid-positive individuals had relatively increased regional connectivity from amygdala to other temporal regions, insula, and orbitofrontal cortex. There was an interaction by amyloid group between tau binding in the medial and lateral amygdala and anxiety. Medial amygdala to retrosplenial connectivity negatively correlated with anxiety symptoms (rs=-0.103, p=0.015). CONCLUSIONS: Our findings suggest that preclinical tau deposition in the amygdala may result in meaningful changes in functional connectivity which may predispose patients to mood symptoms.

2.
bioRxiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38826324

RESUMO

Individual differences in neuroimaging are of interest to clinical and cognitive neuroscientists based on their potential for guiding the personalized treatment of various heterogeneous neurological conditions and diseases. Despite many advantages, the workhorse in this arena, BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI) suffers from low spatiotemporal resolution and specificity as well as a propensity for noise and spurious signal corruption. To better understand individual differences in BOLD-fMRI data, we can use animal models where fMRI, alongside complementary but more invasive contrasts, can be accessed. Here, we apply simultaneous wide-field fluorescence calcium imaging and BOLD-fMRI in mice to interrogate individual differences using a connectome-based identification framework adopted from the human fMRI literature. This approach yields high spatiotemporal resolution cell-type specific signals (here, from glia, excitatory, as well as inhibitory interneurons) from the whole cortex. We found mouse multimodal connectome- based identification to be successful and explored various features of these data.

3.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617320

RESUMO

Preclinical Alzheimer's disease, characterized by the initial accumulation of amyloid and tau pathologies without symptoms, presents a critical opportunity for early intervention. Yet, the interplay between these pathological markers and the functional connectome during this window remains understudied. We therefore set out to elucidate the relationship between the functional connectome and amyloid and tau, as assessed by PET imaging, in individuals with preclinical AD using connectome-based predictive modeling (CPM). We found that functional connectivity predicts tau PET, outperforming amyloid PET models. These models were predominantly governed by linear relationships between functional connectivity and tau. Tau models demonstrated a stronger correlation to global connectivity than underlying tau PET. Furthermore, we identify sex-based differences in the ability to predict regional tau, without any underlying differences in tau PET or global connectivity. Taken together, these results suggest tau is more closely coupled to functional connectivity than amyloid in preclinical disease, and that multimodal predictive modeling approaches stand to identify unique relationships that any one modality may be insufficient to discern.

4.
Patterns (N Y) ; 4(7): 100756, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37521052

RESUMO

Neuroimaging-based predictive models continue to improve in performance, yet a widely overlooked aspect of these models is "trustworthiness," or robustness to data manipulations. High trustworthiness is imperative for researchers to have confidence in their findings and interpretations. In this work, we used functional connectomes to explore how minor data manipulations influence machine learning predictions. These manipulations included a method to falsely enhance prediction performance and adversarial noise attacks designed to degrade performance. Although these data manipulations drastically changed model performance, the original and manipulated data were extremely similar (r = 0.99) and did not affect other downstream analysis. Essentially, connectome data could be inconspicuously modified to achieve any desired prediction performance. Overall, our enhancement attacks and evaluation of existing adversarial noise attacks in connectome-based models highlight the need for counter-measures that improve the trustworthiness to preserve the integrity of academic research and any potential translational applications.

5.
Trends Neurosci ; 46(7): 508-524, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37164869

RESUMO

The rapid and coordinated propagation of neural activity across the brain provides the foundation for complex behavior and cognition. Technical advances across neuroscience subfields have advanced understanding of these dynamics, but points of convergence are often obscured by semantic differences, creating silos of subfield-specific findings. In this review we describe how a parsimonious conceptualization of brain state as the fundamental building block of whole-brain activity offers a common framework to relate findings across scales and species. We present examples of the diverse techniques commonly used to study brain states associated with physiology and higher-order cognitive processes, and discuss how integration across them will enable a more comprehensive and mechanistic characterization of the neural dynamics that are crucial to survival but are disrupted in disease.


Assuntos
Encéfalo , Neurociências , Humanos , Encéfalo/fisiologia , Cognição/fisiologia
7.
Lancet Digit Health ; 5(6): e350-e359, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061351

RESUMO

BACKGROUND: Physical frailty is a state of increased vulnerability to stressors and is associated with serious health issues. However, how frailty affects and is affected by numerous other factors, including mental health and brain structure, remains underexplored. We aimed to investigate the mutual effects of frailty and health using large, multidimensional data. METHODS: For this population-based study, we used data from the UK Biobank to examine the pattern and direction of association between physical frailty and 325 health-related measures across multiple domains, using linear mixed-effect models and adjusting for numerous confounders. Participants were included if complete data were available for all five indicators of frailty, all covariates, and at least one health measure. We further examined the association between frailty and brain structure and the role of this association in mediating the relationship between frailty and health outcomes. FINDINGS: 483 033 participants aged 38-73 years were included in the study at baseline (between Dec 19, 2006, and Oct 1, 2010); at a median follow-up of 9 years (IQR 8-10), behavioural data were available for 46 501 participants and neuroimaging data for 40 210 participants. The severity of physical frailty was significantly associated with decreased cognitive performance (Cohen's d=0·025-0·162), increased early-life risks (d=0·026-0·111), unhealthy lifestyle (d=0·013-0·394), poor physical fitness (d=0·007-0·668), increased symptoms of poor mental health (d=0·032-0·607), severe environmental pollution (d=0·013-0·064), and adverse biochemical markers (d=0·025-0·198). Some associations were bidirectional, with the strongest effects on mental health measures. The severity of frailty correlated with increased total white matter hyperintensity and lower grey matter volume, particularly in subcortical regions (d=0·027-0·082), which significantly mediated the association between frailty and health-related outcomes, although the mediated effects were small. INTERPRETATION: Physical frailty is associated with diverse unfavourable health-related outcomes, which can be mediated by differences in brain structure. Our findings offer a framework for guiding preventative strategies targeting both frailty and psychiatric disorders. FUNDING: National Institute of Mental Health, National Science Foundation.


Assuntos
Fragilidade , Pessoa de Meia-Idade , Humanos , Idoso , Fragilidade/epidemiologia , Bancos de Espécimes Biológicos , Encéfalo/diagnóstico por imagem , Reino Unido/epidemiologia , Avaliação de Resultados em Cuidados de Saúde
8.
Nat Neurosci ; 26(4): 673-681, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973511

RESUMO

Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows for comparisons with data modalities collected under invasive or terminal procedures. Currently, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. Here we introduce StandardRat, a consensus rat functional magnetic resonance imaging acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired from rats across 46 centers. We developed a reproducible pipeline for analyzing rat data acquired with diverse protocols and determined experimental and processing parameters associated with the robust detection of functional connectivity across centers. We show that the standardized protocol enhances biologically plausible functional connectivity patterns relative to previous acquisitions. The protocol and processing pipeline described here is openly shared with the neuroimaging community to promote interoperability and cooperation toward tackling the most important challenges in neuroscience.


Assuntos
Mapeamento Encefálico , Encéfalo , Ratos , Animais , Mapeamento Encefálico/métodos , Consenso , Neuroimagem , Imageamento por Ressonância Magnética/métodos
9.
Cereb Cortex ; 33(10): 6320-6334, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573438

RESUMO

Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.


Assuntos
Atenção , Transtorno do Espectro Autista , Encéfalo , Conectoma , Humanos , Adolescente , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Conjuntos de Dados como Assunto , Masculino , Feminino , Encéfalo/fisiopatologia , Encéfalo/ultraestrutura
10.
Cereb Cortex ; 33(10): 6139-6151, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563018

RESUMO

Women show an increased lifetime risk of Alzheimer's disease (AD) compared with men. Characteristic brain connectivity changes, particularly within the default mode network (DMN), have been associated with both symptomatic and preclinical AD, but the impact of sex on DMN function throughout aging is poorly understood. We investigated sex differences in DMN connectivity over the lifespan in 595 cognitively healthy participants from the Human Connectome Project-Aging cohort. We used the intrinsic connectivity distribution (a robust voxel-based metric of functional connectivity) and a seed connectivity approach to determine sex differences within the DMN and between the DMN and whole brain. Compared with men, women demonstrated higher connectivity with age in posterior DMN nodes and lower connectivity in the medial prefrontal cortex. Differences were most prominent in the decades surrounding menopause. Seed-based analysis revealed higher connectivity in women from the posterior cingulate to angular gyrus, which correlated with neuropsychological measures of declarative memory, and hippocampus. Taken together, we show significant sex differences in DMN subnetworks over the lifespan, including patterns in aging women that resemble changes previously seen in preclinical AD. These findings highlight the importance of considering sex in neuroimaging studies of aging and neurodegeneration.


Assuntos
Conectoma , Envelhecimento Saudável , Humanos , Masculino , Adulto , Feminino , Rede de Modo Padrão , Caracteres Sexuais , Imageamento por Ressonância Magnética/métodos , Testes Neuropsicológicos , Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem
11.
Nature ; 609(7925): 109-118, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002572

RESUMO

Individual differences in brain functional organization track a range of traits, symptoms and behaviours1-12. So far, work modelling linear brain-phenotype relationships has assumed that a single such relationship generalizes across all individuals, but models do not work equally well in all participants13,14. A better understanding of in whom models fail and why is crucial to revealing robust, useful and unbiased brain-phenotype relationships. To this end, here we related brain activity to phenotype using predictive models-trained and tested on independent data to ensure generalizability15-and examined model failure. We applied this data-driven approach to a range of neurocognitive measures in a new, clinically and demographically heterogeneous dataset, with the results replicated in two independent, publicly available datasets16,17. Across all three datasets, we find that models reflect not unitary cognitive constructs, but rather neurocognitive scores intertwined with sociodemographic and clinical covariates; that is, models reflect stereotypical profiles, and fail when applied to individuals who defy them. Model failure is reliable, phenotype specific and generalizable across datasets. Together, these results highlight the pitfalls of a one-size-fits-all modelling approach and the effect of biased phenotypic measures18-20 on the interpretation and utility of resulting brain-phenotype models. We present a framework to address these issues so that such models may reveal the neural circuits that underlie specific phenotypes and ultimately identify individualized neural targets for clinical intervention.


Assuntos
Encéfalo , Simulação por Computador , Individualidade , Fenótipo , Estereotipagem , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conjuntos de Dados como Assunto , Humanos , Testes de Estado Mental e Demência , Modelos Biológicos
12.
Biol Psychiatry ; 92(8): 626-642, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35690495

RESUMO

Autism is a heterogeneous neurodevelopmental condition, and functional magnetic resonance imaging-based studies have helped advance our understanding of its effects on brain network activity. We review how predictive modeling, using measures of functional connectivity and symptoms, has helped reveal key insights into this condition. We discuss how different prediction frameworks can further our understanding of the brain-based features that underlie complex autism symptomatology and consider how predictive models may be used in clinical settings. Throughout, we highlight aspects of study interpretation, such as data decay and sampling biases, that require consideration within the context of this condition. We close by suggesting exciting future directions for predictive modeling in autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Conectoma , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno Autístico/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Previsões , Humanos , Imageamento por Ressonância Magnética
13.
Neuroimage ; 258: 119364, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35690257

RESUMO

Even when subjects are at rest, it is thought that brain activity is organized into distinct brain states during which reproducible patterns are observable. Yet, it is unclear how to define or distinguish different brain states. A potential source of brain state variation is arousal, which may play a role in modulating functional interactions between brain regions. Here, we use simultaneous resting state functional magnetic resonance imaging (fMRI) and pupillometry to study the impact of arousal levels indexed by pupil area on the integration of large-scale brain networks. We employ a novel sparse dictionary learning-based method to identify hub regions participating in between-network integration stratified by arousal, by measuring k-hubness, the number (k) of functionally overlapping networks in each brain region. We show evidence of a brain-wide decrease in between-network integration and inter-subject variability at low relative to high arousal, with differences emerging across regions of the frontoparietal, default mode, motor, limbic, and cerebellum networks. State-dependent changes in k-hubness relate to the actual patterns of network integration within these hubs, suggesting a brain state transition from high to low arousal characterized by global synchronization and reduced network overlaps. We demonstrate that arousal is not limited to specific brain areas known to be directly associated with arousal regulation, but instead has a brain-wide impact that involves high-level between-network communications. Lastly, we show a systematic change in pairwise fMRI signal correlation structures in the arousal state-stratified data, and demonstrate that the choice of global signal regression could result in different conclusions in conventional graph theoretical analysis and in the analysis of k-hubness when studying arousal modulations. Together, our results suggest the presence of global and local effects of pupil-linked arousal modulations on resting state brain functional connectivity.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Nível de Alerta/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Pupila/fisiologia
14.
J Cereb Blood Flow Metab ; 42(9): 1616-1631, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35466772

RESUMO

Functional network activity alterations are one of the earliest hallmarks of Alzheimer's disease (AD), detected prior to amyloidosis and tauopathy. Better understanding the neuronal underpinnings of such network alterations could offer mechanistic insight into AD progression. Here, we examined a mouse model (3xTgAD mice) recapitulating this early AD stage. We found resting functional connectivity loss within ventral networks, including the entorhinal cortex, aligning with the spatial distribution of tauopathy reported in humans. Unexpectedly, in contrast to decreased connectivity at rest, 3xTgAD mice show enhanced fMRI signal within several projection areas following optogenetic activation of the entorhinal cortex. We corroborate this finding by demonstrating neuronal facilitation within ventral networks and synaptic hyperexcitability in projection targets. 3xTgAD mice, thus, reveal a dichotomic hypo-connected:resting versus hyper-responsive:active phenotype. This strong homotopy between the areas affected supports the translatability of this pathophysiological model to tau-related, early-AD deficits in humans.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Córtex Entorrinal , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
15.
J Cogn Neurosci ; 34(10): 1810-1841, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104356

RESUMO

Exposure to socioeconomic disadvantages (SED) can have negative impacts on mental health, yet SED are a multifaceted construct and the precise processes by which SED confer deleterious effects are less clear. Using a large and diverse sample of preadolescents (ages 9-10 years at baseline, n = 4038, 49% female) from the Adolescent Brain Cognitive Development Study, we examined associations among SED at both household (i.e., income-needs and material hardship) and neighborhood (i.e., area deprivation and neighborhood unsafety) levels, frontoamygdala resting-state functional connectivity, and internalizing symptoms at baseline and 1-year follow-up. SED were positively associated with internalizing symptoms at baseline and indirectly predicted symptoms 1 year later through elevated symptoms at baseline. At the household level, youth in households characterized by higher disadvantage (i.e., lower income-to-needs ratio) exhibited more strongly negative frontoamygdala coupling, particularly between the bilateral amygdala and medial OFC (mOFC) regions within the frontoparietal network. Although more strongly positive amygdala-mOFC coupling was associated with higher levels of internalizing symptoms at baseline and 1-year follow-up, it did not mediate the association between income-to-needs ratio and internalizing symptoms. However, at the neighborhood level, amygdala-mOFC functional coupling moderated the effect of neighborhood deprivation on internalizing symptoms. Specifically, higher neighborhood deprivation was associated with higher internalizing symptoms for youth with more strongly positive connectivity, but not for youth with more strongly negative connectivity, suggesting a potential buffering effect. Findings highlight the importance of capturing multilevel socioecological contexts in which youth develop to identify youth who are most likely to benefit from early interventions.


Assuntos
Tonsila do Cerebelo , Características de Residência , Adolescente , Tonsila do Cerebelo/diagnóstico por imagem , Encéfalo/anormalidades , Criança , Fenda Labial , Fissura Palatina , Feminino , Humanos , Masculino , Fatores Socioeconômicos
16.
STAR Protoc ; 3(1): 101077, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35036958

RESUMO

Large, publicly available neuroimaging datasets are becoming increasingly common, but their use presents challenges because of insufficient knowledge of the tool options for data processing and proper data organization. Here, we describe a protocol to lessen these barriers. We describe the steps for the search and download of the open-source dataset. We detail the steps for proper data management and practical guidelines for data analysis. Finally, we give instructions for data and result sharing on public repositories and preprint services. For complete details on the use and execution of this profile, please refer to Horien et al. (2021).


Assuntos
Neuroimagem
17.
J Neurosci Res ; 100(3): 731-743, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34496065

RESUMO

The endocannabinoid system is an important regulator of emotional responses such as fear, and a number of studies have implicated endocannabinoid signaling in anxiety. The fatty acid amide hydrolase (FAAH) C385A polymorphism, which is associated with enhanced endocannabinoid signaling in the brain, has been identified across species as a potential protective factor from anxiety. In particular, adults with the variant FAAH 385A allele have greater fronto-amygdala connectivity and lower anxiety symptoms. Whether broader network-level differences in connectivity exist, and when during development this neural phenotype emerges, remains unknown and represents an important next step in understanding how the FAAH C385A polymorphism impacts neurodevelopment and risk for anxiety disorders. Here, we leveraged data from 3,109 participants in the nationwide Adolescent Brain Cognitive Development Study℠ (10.04 ± 0.62 years old; 44.23% female, 55.77% male) and a cross-validated, data-driven approach to examine associations between genetic variation and large-scale resting-state brain networks. Our findings revealed a distributed brain network, comprising functional connections that were both significantly greater (95% CI for p values = [<0.001, <0.001]) and lesser (95% CI for p values = [0.006, <0.001]) in A-allele carriers relative to non-carriers. Furthermore, there was a significant interaction between genotype and the summarized connectivity of functional connections that were greater in A-allele carriers, such that non-carriers with connectivity more similar to A-allele carriers (i.e., greater connectivity) had lower anxiety symptoms (ß = -0.041, p = 0.030). These findings provide novel evidence of network-level changes in neural connectivity associated with genetic variation in endocannabinoid signaling and suggest that genotype-associated neural differences may emerge at a younger age than genotype-associated differences in anxiety.


Assuntos
Tonsila do Cerebelo , Endocanabinoides , Adolescente , Tonsila do Cerebelo/fisiologia , Ansiedade/genética , Transtornos de Ansiedade , Endocanabinoides/genética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Polimorfismo de Nucleotídeo Único/genética
19.
Acad Psychiatry ; 45(2): 232-233, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32170591

Assuntos
Autoimagem , Humanos
20.
Nat Hum Behav ; 5(2): 185-193, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33288916

RESUMO

Large datasets that enable researchers to perform investigations with unprecedented rigor are growing increasingly common in neuroimaging. Due to the simultaneous increasing popularity of open science, these state-of-the-art datasets are more accessible than ever to researchers around the world. While analysis of these samples has pushed the field forward, they pose a new set of challenges that might cause difficulties for novice users. Here we offer practical tips for working with large datasets from the end-user's perspective. We cover all aspects of the data lifecycle: from what to consider when downloading and storing the data to tips on how to become acquainted with a dataset one did not collect and what to share when communicating results. This manuscript serves as a practical guide one can use when working with large neuroimaging datasets, thus dissolving barriers to scientific discovery.


Assuntos
Acesso à Informação , Conjuntos de Dados como Assunto , Neuroimagem , Pesquisa Biomédica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...