Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet Sci ; 11(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39058013

RESUMO

A specific-pathogen-free (SPF) chicken colony was maintained with successive groups a month apart in age. The absence of specific pathogens, including chicken anemia virus (CAV), was confirmed through periodic serological tests for each group. However, some groups became CAV seropositive. The procedures of removing seropositive and the adjacent seronegative chickens followed with chemically disinfecting the housing did not halt CAV outbreaks. The full genome sequence of the CAV strain that appeared was closely related to low-virulence isolates in China. The outbreaks of CAV decreased with an increase in the seropositive chicken population, indicating that the progeny is protected from CAV infection by maternal anti-CAV antibodies. The persistence of CAV in erythroid and lymphoid tissues or reproductive tissues from CAV seropositive chickens was examined in chickens of various ages using polymerase chain reaction (PCR). Since a low persistence of CAV was observed in the colony, we isolated eggs from CAV seropositive hens through artificial insemination using semen collected from roosters and confirmed as CAV-free by PCR. Fertilized eggs were transferred to a new SPF facility and used for generating CAV-free progeny. To date, chickens reared in the new facility have been CAV-free for longer than two years. Redirection of eggs from seropositive hens was an effective means of eliminating CAV from chickens.

2.
Exp Anim ; 65(1): 37-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26411321

RESUMO

Most cases of ischemic heart disease and stroke occur as a result of atherosclerosis. The purpose of this study was to produce a new Nippon Institute for Biological Science (NIBS) miniature pig model by somatic cell nuclear transfer (SCNT) for studying atherosclerosis. The human apolipoprotein(a) (apo(a)) genes were transfected into kidney epithelial cells derived from a male and a female piglet. Male cells were used as donors initially, and 275 embryos were transferred to surrogates. Three offspring were delivered, and the production efficiency was 1.1% (3/275). Serial female cells were injected into 937 enucleated oocytes. Eight offspring were delivered (production efficiency: 0.9%) from surrogates. One male and 2 female transgenic miniature pigs matured well. Lipoprotein(a) was found in the male and one of the female transgenic animals. These results demonstrate successful production of human apo(a) transgenic NIBS miniature pigs by SCNT. Our goal is to establish a human apo(a) transgenic NIBS miniature pig colony for studying atherosclerosis.


Assuntos
Animais Geneticamente Modificados , Apoproteína(a)/genética , Aterosclerose , Modelos Animais de Doenças , Técnicas de Transferência Nuclear , Porco Miniatura , Animais , Transferência Embrionária , Células Epiteliais , Feminino , Rim/citologia , Masculino , Suínos , Porco Miniatura/embriologia , Transfecção
3.
Xenotransplantation ; 20(3): 157-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23581451

RESUMO

BACKGROUND: Nuclear transfer (NT) technologies offer a means for producing the genetically modified pigs necessary to develop swine models for mechanistic studies of disease processes as well as to serve as organ donors for xenotransplantation. Most previous studies have used commercial pigs as surrogates. METHOD AND RESULTS: In this study, we established a cloning technique for miniature pigs by somatic cell nuclear transfer (SCNT) using Nippon Institute for Biological Science (NIBS) miniature pigs as surrogates. Moreover, utilizing this technique, we have successfully produced an α-1, 3-galactosyltransferase knockout (GalT-KO) miniature swine. Fibroblasts procured from a NIBS miniature pig fetus were injected into 1312 enucleated oocytes. The cloned embryos were transferred to 11 surrogates of which five successfully delivered 13 cloned offspring; the production efficiency was 1.0% (13/1312). In a second experiment, lung fibroblasts obtained from neonatal GalT-KO MGH miniature swine were used as donor cells and 1953 cloned embryos were transferred to 12 surrogates. Six cloned offspring were born from five surrogates, a production efficiency of 0.3% (6/1953). CONCLUSIONS: These results demonstrate successful establishment of a miniature pig cloning technique by SCNT using NIBS miniature pigs as surrogates. To our knowledge, this is the first demonstration of successful production of GalT-KO miniature swine using miniature swine surrogates. This technique could help to ensure a stable supply of the cloned pigs through the use of miniature pig surrogates and could expand production in countries with limited space or in facilities with special regulations such as specific pathogen-free or good laboratory practice.


Assuntos
Clonagem de Organismos/veterinária , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Porco Miniatura/genética , Animais , Animais Geneticamente Modificados , Clonagem de Organismos/métodos , Transferência Embrionária/veterinária , Feminino , Galactosiltransferases/imunologia , Técnicas de Inativação de Genes/veterinária , Masculino , Técnicas de Transferência Nuclear , Gravidez , Suínos , Porco Miniatura/imunologia , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA