Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 45(6): 1191-1202, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36102069

RESUMO

Lysosomal storage disorders (LSDs) are inherited metabolic diseases caused by genetic defects in lysosomal enzymes or related factors. LSDs are associated with excessive accumulation of natural substrates in lysosomes leading to central nervous system and peripheral tissue damage. Abnormal autophagy is also involved in pathogenesis, although the underlying mechanisms remain unclear. We demonstrated that impairment of lysosome-autophagosome fusion is due to suppressed endocytosis in LSDs. The fusion was reduced in several LSD cells and the brains of LSD model mice, suggesting that the completion of autophagy is suppressed by the accumulation of substrates. In this brain, the expression of the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins, VAMP8 and Syntaxin7, was decreased on the lysosomal surface but not intracellular. This aberrant autophagy preceded the development of pathological phenotypes in LSD-model mice. Furthermore, the enzyme deficiency leading to the substrate accumulation could suppress endocytosis, and the inhibited endocytosis decreased SNARE proteins localized on lysosomes. These findings suggest that the shortage of SNARE proteins on lysosomes is one of the reasons for the impairment of lysosome-autophagosome fusion in LSD cells. Defects in lysosomal enzyme activity suppress endocytosis and decrease the supply of intracellular SNARE proteins recruited to lysosomes. This shortage of lysosomal SNARE proteins impairs lysosome-autophagosome fusion in lysosomal storage disorders.


Assuntos
Doenças por Armazenamento dos Lisossomos , Proteínas SNARE , Animais , Camundongos , Autofagia/fisiologia , Endocitose , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Proteínas SNARE/metabolismo
2.
Mol Ther Methods Clin Dev ; 25: 297-310, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35573044

RESUMO

Galactosialidosis (GS) is a lysosomal cathepsin A (CTSA) deficiency. It associates with a simultaneous decrease of neuraminidase 1 (NEU1) activity and sialylglycan storage. Central nervous system (CNS) symptoms reduce the quality of life of juvenile/adult-type GS patients, but there is no effective therapy. Here, we established a novel GS model mouse carrying homozygotic Ctsa IVS6+1g→a mutation causing partial exon 6 skipping with concomitant deficiency of Ctsa/Neu1. The GS mice developed juvenile/adult GS-like symptoms, such as gargoyle-like face, edema, proctoprosia due to sialylglycan accumulation, and neurovisceral inflammation, including activated microglia/macrophage appearance and increase of inflammatory chemokines. We produced human CTSA precursor proteins (proCTSA), a homodimer carrying terminal mannose 6-phosphate (M6P)-type N-glycans. The CHO-derived proCTSA was taken up by GS patient-derived fibroblasts via M6P receptors and delivered to lysosomes. Catalytically active mature CTSA showed a shorter half-life due to intralysosomal proteolytic degradation. Following single i.c.v. administration, proCTSA was widely distributed, restored the Neu1 activity, and reduced the sialylglycans accumulated in brain regions. Moreover, proCTSA suppressed neuroinflammation associated with reduction of activated microglia/macrophage and up-regulated Mip1α. The results show therapeutic effects of intracerebrospinal enzyme replacement utilizing CHO-derived proCTSA and suggest suppression of CNS symptoms.

3.
ACS Appl Bio Mater ; 5(1): 205-213, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35014832

RESUMO

Human neuraminidase 1 (NEU1) is a lysosomal glycosidase that cleaves the terminal sialic acids of sialylglycoconjugates. NEU1 is biosynthesized in the endoplasmic reticulum (ER) lumen as an N-glycosylated protein. NEU1 also associates with cathepsin A (CTSA) in ER, migrates to lysosomes, and exerts catalytic activity. Extraordinary in cellulo crystallization of NEU1 protein in ER despite carrying three N-glycans per molecule at N186, N343, and N352, respectively, were observed when the single human NEU1 gene was overexpressed in mammalian cells. In this study, we first purified the NEU1 from the isolated crystals produced by the HEK293 NEU1-KO cell transiently overexpressing the normal NEU1 and found that the N-glycans were high-mannose or complex types carrying terminal sialic acids. The result suggests that a part of NEU1 crystals were formed or transported to the Golgi apparatus. Second, we compared the effects of single amino acid substitution at the N-sequons, including N186Q, N343Q, and N352Q, each one N-glycan reduction from one NEU1 molecule. We demonstrated that N186Q mutant protein with low enzyme activity and formed a few amounts of smaller crystals. The N343Q mutant exhibited half of the normal intracellular activity, but the numbers and sizes of crystals were almost the same as those of normal NEU1. The N352Q mutant exhibited almost the same activity as the normal enzyme. The numbers of the N352Q crystals were smaller than those of normal NEU1. According to these findings, the N186Q NEU1 protein should have lower stability in ER due to abnormal folding. The second N-glycan at the N343-sequon has little effect on self-aggregation of NEU1. The third N-glycan at the N352-sequon contributes to the self-aggregation of NEU1. We also demonstrated that the three NEU1 mutants associate with the relatively excessive CTSA and migrate to lysosomes.


Assuntos
Neuraminidase , Ácidos Siálicos , Animais , Catepsina A/genética , Cristalização , Células HEK293 , Humanos , Mamíferos/metabolismo , Neuraminidase/genética , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...