Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Digit Discov ; 3(1): 23-33, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239898

RESUMO

In light of the pressing need for practical materials and molecular solutions to renewable energy and health problems, to name just two examples, one wonders how to accelerate research and development in the chemical sciences, so as to address the time it takes to bring materials from initial discovery to commercialization. Artificial intelligence (AI)-based techniques, in particular, are having a transformative and accelerating impact on many if not most, technological domains. To shed light on these questions, the authors and participants gathered in person for the ASLLA Symposium on the theme of 'Accelerated Chemical Science with AI' at Gangneung, Republic of Korea. We present the findings, ideas, comments, and often contentious opinions expressed during four panel discussions related to the respective general topics: 'Data', 'New applications', 'Machine learning algorithms', and 'Education'. All discussions were recorded, transcribed into text using Open AI's Whisper, and summarized using LG AI Research's EXAONE LLM, followed by revision by all authors. For the broader benefit of current researchers, educators in higher education, and academic bodies such as associations, publishers, librarians, and companies, we provide chemistry-specific recommendations and summarize the resulting conclusions.

2.
J Chem Inf Model ; 62(22): 5411-5424, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36315416

RESUMO

In this study, a framework for the prediction of thermophysical properties based on transfer learning from existing estimation models is explored. The predictive capabilities of conventional group-contribution methods and traditional machine-learning approaches rely heavily on the availability of experimental datasets and their uncertainty. Through the use of a pretraining scheme, which leverages the knowledge established by other estimation methods, improved prediction models for thermophysical properties can be obtained after fine-tuning networks with more accurate experimental data. As our experiments show, for the case of critical properties of compounds, this pipeline not only improves the performance of the models on commonly found organic structures but can also help these models generalize to less explored areas of chemical space, where experimental data is scarce, such as inorganics and heavier organic compounds. Transfer learning from estimation models data also allows for graph-based deep learning models to create more flexible molecular features over a bigger chemical space, which leads to improved predictive capabilities and can give insights into the relationship between molecular structures and thermophysical properties. The generated molecular features can discriminate behavior discrepancy between isomers without the need of additional parameters. Also, this approach shows better robustness to outliers in experimental datasets.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Aprendizado de Máquina , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...