Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
medRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562791

RESUMO

Electronic health records, biobanks, and wearable biosensors contain multiple high-dimensional clinical data (HDCD) modalities (e.g., ECG, Photoplethysmography (PPG), and MRI) for each individual. Access to multimodal HDCD provides a unique opportunity for genetic studies of complex traits because different modalities relevant to a single physiological system (e.g., circulatory system) encode complementary and overlapping information. We propose a novel multimodal deep learning method, M-REGLE, for discovering genetic associations from a joint representation of multiple complementary HDCD modalities. We showcase the effectiveness of this model by applying it to several cardiovascular modalities. M-REGLE jointly learns a lower representation (i.e., latent factors) of multimodal HDCD using a convolutional variational autoencoder, performs genome wide association studies (GWAS) on each latent factor, then combines the results to study the genetics of the underlying system. To validate the advantages of M-REGLE and multimodal learning, we apply it to common cardiovascular modalities (PPG and ECG), and compare its results to unimodal learning methods in which representations are learned from each data modality separately, but the downstream genetic analyses are performed on the combined unimodal representations. M-REGLE identifies 19.3% more loci on the 12-lead ECG dataset, 13.0% more loci on the ECG lead I + PPG dataset, and its genetic risk score significantly outperforms the unimodal risk score at predicting cardiac phenotypes, such as atrial fibrillation (Afib), in multiple biobanks.

2.
medRxiv ; 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37162978

RESUMO

Background: Spirometry measures lung function by selecting the best of multiple efforts meeting pre-specified quality control (QC), and reporting two key metrics: forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC). We hypothesize that discarded submaximal and QC-failing data meaningfully contribute to the prediction of airflow obstruction and all-cause mortality. Methods: We evaluated volume-time spirometry data from the UK Biobank. We identified "best" spirometry efforts as those passing QC with the maximum FVC. "Discarded" efforts were either submaximal or failed QC. To create a combined representation of lung function we implemented a contrastive learning approach, Spirogram-based Contrastive Learning Framework (Spiro-CLF), which utilized all recorded volume-time curves per participant and applied different transformations (e.g. flow-volume, flow-time). In a held-out 20% testing subset we applied the Spiro-CLF representation of a participant's overall lung function to 1) binary predictions of FEV1/FVC < 0.7 and FEV1 Percent Predicted (FEV1PP) < 80%, indicative of airflow obstruction, and 2) Cox regression for all-cause mortality. Findings: We included 940,705 volume-time curves from 352,684 UK Biobank participants with 2-3 spirometry efforts per individual (66.7% with 3 efforts) and at least one QC-passing spirometry effort. Of all spirometry efforts, 24.1% failed QC and 37.5% were submaximal. Spiro-CLF prediction of FEV1/FVC < 0.7 utilizing discarded spirometry efforts had an Area under the Receiver Operating Characteristics (AUROC) of 0.981 (0.863 for FEV1PP prediction). Incorporating discarded spirometry efforts in all-cause mortality prediction was associated with a concordance index (c-index) of 0.654, which exceeded the c-indices from FEV1 (0.590), FVC (0.559), or FEV1/FVC (0.599) from each participant's single best effort. Interpretation: A contrastive learning model using raw spirometry curves can accurately predict lung function using submaximal and QC-failing efforts. This model also has superior prediction of all-cause mortality compared to standard lung function measurements. Funding: MHC is supported by NIH R01HL137927, R01HL135142, HL147148, and HL089856.BDH is supported by NIH K08HL136928, U01 HL089856, and an Alpha-1 Foundation Research Grant.DH is supported by NIH 2T32HL007427-41EKS is supported by NIH R01 HL152728, R01 HL147148, U01 HL089856, R01 HL133135, P01 HL132825, and P01 HL114501.PJC is supported by NIH R01HL124233 and R01HL147326.SPB is supported by NIH R01HL151421 and UH3HL155806.TY, FH, and CYM are employees of Google LLC.

3.
medRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37163049

RESUMO

High-dimensional clinical data are becoming more accessible in biobank-scale datasets. However, effectively utilizing high-dimensional clinical data for genetic discovery remains challenging. Here we introduce a general deep learning-based framework, REpresentation learning for Genetic discovery on Low-dimensional Embeddings (REGLE), for discovering associations between genetic variants and high-dimensional clinical data. REGLE uses convolutional variational autoencoders to compute a non-linear, low-dimensional, disentangled embedding of the data with highly heritable individual components. REGLE can incorporate expert-defined or clinical features and provides a framework to create accurate disease-specific polygenic risk scores (PRS) in datasets which have minimal expert phenotyping. We apply REGLE to both respiratory and circulatory systems: spirograms which measure lung function and photoplethysmograms (PPG) which measure blood volume changes. Genome-wide association studies on REGLE embeddings identify more genome-wide significant loci than existing methods and replicate known loci for both spirograms and PPG, demonstrating the generality of the framework. Furthermore, these embeddings are associated with overall survival. Finally, we construct a set of PRSs that improve predictive performance of asthma, chronic obstructive pulmonary disease, hypertension, and systolic blood pressure in multiple biobanks. Thus, REGLE embeddings can quantify clinically relevant features that are not currently captured in a standardized or automated way.

4.
Nat Genet ; 55(5): 787-795, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37069358

RESUMO

Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is highly heritable. While COPD is clinically defined by applying thresholds to summary measures of lung function, a quantitative liability score has more power to identify genetic signals. Here we train a deep convolutional neural network on noisy self-reported and International Classification of Diseases labels to predict COPD case-control status from high-dimensional raw spirograms and use the model's predictions as a liability score. The machine-learning-based (ML-based) liability score accurately discriminates COPD cases and controls, and predicts COPD-related hospitalization without any domain-specific knowledge. Moreover, the ML-based liability score is associated with overall survival and exacerbation events. A genome-wide association study on the ML-based liability score replicates existing COPD and lung function loci and also identifies 67 new loci. Lastly, our method provides a general framework to use ML methods and medical-record-based labels that does not require domain knowledge or expert curation to improve disease prediction and genomic discovery for drug design.


Assuntos
Aprendizado Profundo , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudo de Associação Genômica Ampla/métodos , Doença Pulmonar Obstrutiva Crônica/genética , Loci Gênicos , Polimorfismo de Nucleotídeo Único/genética
5.
Nat Genet ; 54(6): 827-836, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668300

RESUMO

Disease-associated single-nucleotide polymorphisms (SNPs) generally do not implicate target genes, as most disease SNPs are regulatory. Many SNP-to-gene (S2G) linking strategies have been developed to link regulatory SNPs to the genes that they regulate in cis. Here, we developed a heritability-based framework for evaluating and combining different S2G strategies to optimize their informativeness for common disease risk. Our optimal combined S2G strategy (cS2G) included seven constituent S2G strategies and achieved a precision of 0.75 and a recall of 0.33, more than doubling the recall of any individual strategy. We applied cS2G to fine-mapping results for 49 UK Biobank diseases/traits to predict 5,095 causal SNP-gene-disease triplets (with S2G-derived functional interpretation) with high confidence. We further applied cS2G to provide an empirical assessment of disease omnigenicity; we determined that the top 1% of genes explained roughly half of the SNP heritability linked to all genes and that gene-level architectures vary with variant allele frequency.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
6.
Nat Commun ; 13(1): 241, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017556

RESUMO

Genome-wide association studies (GWASs) examine the association between genotype and phenotype while adjusting for a set of covariates. Although the covariates may have non-linear or interactive effects, due to the challenge of specifying the model, GWAS often neglect such terms. Here we introduce DeepNull, a method that identifies and adjusts for non-linear and interactive covariate effects using a deep neural network. In analyses of simulated and real data, we demonstrate that DeepNull maintains tight control of the type I error while increasing statistical power by up to 20% in the presence of non-linear and interactive effects. Moreover, in the absence of such effects, DeepNull incurs no loss of power. When applied to 10 phenotypes from the UK Biobank (n = 370K), DeepNull discovered more hits (+6%) and loci (+7%), on average, than conventional association analyses, many of which are biologically plausible or have previously been reported. Finally, DeepNull improves upon linear modeling for phenotypic prediction (+23% on average).


Assuntos
Estudo de Associação Genômica Ampla/métodos , Fenótipo , Simulação por Computador , Modelos Lineares , Projetos de Pesquisa
7.
PLoS Genet ; 17(9): e1009733, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543273

RESUMO

Increasingly large Genome-Wide Association Studies (GWAS) have yielded numerous variants associated with many complex traits, motivating the development of "fine mapping" methods to identify which of the associated variants are causal. Additionally, GWAS of the same trait for different populations are increasingly available, raising the possibility of refining fine mapping results further by leveraging different linkage disequilibrium (LD) structures across studies. Here, we introduce multiple study causal variants identification in associated regions (MsCAVIAR), a method that extends the popular CAVIAR fine mapping framework to a multiple study setting using a random effects model. MsCAVIAR only requires summary statistics and LD as input, accounts for uncertainty in association statistics using a multivariate normal model, allows for multiple causal variants at a locus, and explicitly models the possibility of different SNP effect sizes in different populations. We demonstrate the efficacy of MsCAVIAR in both a simulation study and a trans-ethnic, trans-biobank fine mapping analysis of High Density Lipoprotein (HDL).


Assuntos
Estudo de Associação Genômica Ampla , Causalidade , Mapeamento Cromossômico/métodos , Humanos , Desequilíbrio de Ligação , Lipoproteínas HDL/genética , Polimorfismo de Nucleotídeo Único
8.
Am J Hum Genet ; 108(7): 1217-1230, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077760

RESUMO

Genome-wide association studies (GWASs) require accurate cohort phenotyping, but expert labeling can be costly, time intensive, and variable. Here, we develop a machine learning (ML) model to predict glaucomatous optic nerve head features from color fundus photographs. We used the model to predict vertical cup-to-disc ratio (VCDR), a diagnostic parameter and cardinal endophenotype for glaucoma, in 65,680 Europeans in the UK Biobank (UKB). A GWAS of ML-based VCDR identified 299 independent genome-wide significant (GWS; p ≤ 5 × 10-8) hits in 156 loci. The ML-based GWAS replicated 62 of 65 GWS loci from a recent VCDR GWAS in the UKB for which two ophthalmologists manually labeled images for 67,040 Europeans. The ML-based GWAS also identified 93 novel loci, significantly expanding our understanding of the genetic etiologies of glaucoma and VCDR. Pathway analyses support the biological significance of the novel hits to VCDR: select loci near genes involved in neuronal and synaptic biology or harboring variants are known to cause severe Mendelian ophthalmic disease. Finally, the ML-based GWAS results significantly improve polygenic prediction of VCDR and primary open-angle glaucoma in the independent EPIC-Norfolk cohort.


Assuntos
Aprendizado de Máquina , Disco Óptico/anatomia & histologia , Conjuntos de Dados como Assunto , Angiofluoresceinografia , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto/diagnóstico por imagem , Humanos , Modelos Anatômicos , Disco Óptico/diagnóstico por imagem , Fenótipo , Medição de Risco
9.
Genome Biol ; 22(1): 128, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931127

RESUMO

In standard genome-wide association studies (GWAS), the standard association test is underpowered to detect associations between loci with multiple causal variants with small effect sizes. We propose a statistical method, Model-based Association test Reflecting causal Status (MARS), that finds associations between variants in risk loci and a phenotype, considering the causal status of variants, only requiring the existing summary statistics to detect associated risk loci. Utilizing extensive simulated data and real data, we show that MARS increases the power of detecting true associated risk loci compared to previous approaches that consider multiple variants, while controlling the type I error.


Assuntos
Alelos , Estudos de Associação Genética/métodos , Heterogeneidade Genética , Modelos Genéticos , Modelos Estatísticos , Algoritmos , Estudo de Associação Genômica Ampla/métodos , Humanos
10.
Genome Biol ; 22(1): 49, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33499903

RESUMO

The resources generated by the GTEx consortium offer unprecedented opportunities to advance our understanding of the biology of human diseases. Here, we present an in-depth examination of the phenotypic consequences of transcriptome regulation and a blueprint for the functional interpretation of genome-wide association study-discovered loci. Across a broad set of complex traits and diseases, we demonstrate widespread dose-dependent effects of RNA expression and splicing. We develop a data-driven framework to benchmark methods that prioritize causal genes and find no single approach outperforms the combination of multiple approaches. Using colocalization and association approaches that take into account the observed allelic heterogeneity of gene expression, we propose potential target genes for 47% (2519 out of 5385) of the GWAS loci examined.


Assuntos
Expressão Gênica , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Genes , Humanos , Herança Multifatorial , Transcriptoma
11.
Nat Genet ; 52(12): 1355-1363, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199916

RESUMO

Fine-mapping aims to identify causal variants impacting complex traits. We propose PolyFun, a computationally scalable framework to improve fine-mapping accuracy by leveraging functional annotations across the entire genome-not just genome-wide-significant loci-to specify prior probabilities for fine-mapping methods such as SuSiE or FINEMAP. In simulations, PolyFun + SuSiE and PolyFun + FINEMAP were well calibrated and identified >20% more variants with a posterior causal probability >0.95 than identified in their nonfunctionally informed counterparts. In analyses of 49 UK Biobank traits (average n = 318,000), PolyFun + SuSiE identified 3,025 fine-mapped variant-trait pairs with posterior causal probability >0.95, a >32% improvement versus SuSiE. We used posterior mean per-SNP heritabilities from PolyFun + SuSiE to perform polygenic localization, constructing minimal sets of common SNPs causally explaining 50% of common SNP heritability; these sets ranged in size from 28 (hair color) to 3,400 (height) to 2 million (number of children). In conclusion, PolyFun prioritizes variants for functional follow-up and provides insights into complex trait architectures.


Assuntos
Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Genoma Humano/genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
12.
Nat Commun ; 11(1): 4703, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943643

RESUMO

Deep learning models have shown great promise in predicting regulatory effects from DNA sequence, but their informativeness for human complex diseases is not fully understood. Here, we evaluate genome-wide SNP annotations from two previous deep learning models, DeepSEA and Basenji, by applying stratified LD score regression to 41 diseases and traits (average N = 320K), conditioning on a broad set of coding, conserved and regulatory annotations. We aggregated annotations across all (respectively blood or brain) tissues/cell-types in meta-analyses across all (respectively 11 blood or 8 brain) traits. The annotations were highly enriched for disease heritability, but produced only limited conditionally significant results: non-tissue-specific and brain-specific Basenji-H3K4me3 for all traits and brain traits respectively. We conclude that deep learning models have yet to achieve their full potential to provide considerable unique information for complex disease, and that their conditional informativeness for disease cannot be inferred from their accuracy in predicting regulatory annotations.


Assuntos
Aprendizado Profundo , Doença/genética , Anotação de Sequência Molecular , Alelos , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Histonas/genética , Humanos , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único
13.
Genome Biol ; 21(1): 233, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32912333

RESUMO

BACKGROUND: Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization. RESULTS: Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up. CONCLUSIONS: We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach.


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Grupos Raciais/genética , Expressão Gênica , Genótipo , Humanos
14.
Hum Mol Genet ; 29(7): 1057-1067, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31595288

RESUMO

Regulatory variation plays a major role in complex disease and that cell type-specific binding of transcription factors (TF) is critical to gene regulation. However, assessing the contribution of genetic variation in TF-binding sites to disease heritability is challenging, as binding is often cell type-specific and annotations from directly measured TF binding are not currently available for most cell type-TF pairs. We investigate approaches to annotate TF binding, including directly measured chromatin data and sequence-based predictions. We find that TF-binding annotations constructed by intersecting sequence-based TF-binding predictions with cell type-specific chromatin data explain a large fraction of heritability across a broad set of diseases and corresponding cell types; this strategy of constructing annotations addresses both the limitation that identical sequences may be bound or unbound depending on surrounding chromatin context and the limitation that sequence-based predictions are generally not cell type-specific. We partitioned the heritability of 49 diseases and complex traits using stratified linkage disequilibrium (LD) score regression with the baseline-LD model (which is not cell type-specific) plus the new annotations. We determined that 100 bp windows around MotifMap sequenced-based TF-binding predictions intersected with a union of six cell type-specific chromatin marks (imputed using ChromImpute) performed best, with an 58% increase in heritability enrichment compared to the chromatin marks alone (11.6× vs. 7.3×, P = 9 × 10-14 for difference) and a 20% increase in cell type-specific signal conditional on annotations from the baseline-LD model (P = 8 × 10-11 for difference). Our results show that TF-binding annotations explain substantial disease heritability and can help refine genome-wide association signals.


Assuntos
Cromatina/genética , Doenças Genéticas Inatas/genética , Anotação de Sequência Molecular , Fatores de Transcrição/genética , Sítios de Ligação/genética , Biologia Computacional , Regulação da Expressão Gênica/genética , Doenças Genéticas Inatas/classificação , Doenças Genéticas Inatas/patologia , Humanos , Desequilíbrio de Ligação/genética , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica/genética
16.
PLoS Genet ; 15(12): e1008481, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31834882

RESUMO

Many disease risk loci identified in genome-wide association studies are present in non-coding regions of the genome. Previous studies have found enrichment of expression quantitative trait loci (eQTLs) in disease risk loci, indicating that identifying causal variants for gene expression is important for elucidating the genetic basis of not only gene expression but also complex traits. However, detecting causal variants is challenging due to complex genetic correlation among variants known as linkage disequilibrium (LD) and the presence of multiple causal variants within a locus. Although several fine-mapping approaches have been developed to overcome these challenges, they may produce large sets of putative causal variants when true causal variants are in high LD with many non-causal variants. In eQTL studies, there is an additional source of information that can be used to improve fine-mapping called allelic imbalance (AIM) that measures imbalance in gene expression on two chromosomes of a diploid organism. In this work, we develop a novel statistical method that leverages both AIM and total expression data to detect causal variants that regulate gene expression. We illustrate through simulations and application to 10 tissues of the Genotype-Tissue Expression (GTEx) dataset that our method identifies the true causal variants with higher specificity than an approach that uses only eQTL information. Across all tissues and genes, our method achieves a median reduction rate of 11% in the number of putative causal variants. We use chromatin state data from the Roadmap Epigenomics Consortium to show that the putative causal variants identified by our method are enriched for active regions of the genome, providing orthogonal support that our method identifies causal variants with increased specificity.


Assuntos
Desequilíbrio Alélico , Cromatina/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Herança Multifatorial , Polimorfismo de Nucleotídeo Único
17.
Genome Med ; 11(1): 65, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653223

RESUMO

BACKGROUND: Neurodevelopmental disorders (NDDs) such as autism spectrum disorder, intellectual disability, developmental disability, and epilepsy are characterized by abnormal brain development that may affect cognition, learning, behavior, and motor skills. High co-occurrence (comorbidity) of NDDs indicates a shared, underlying biological mechanism. The genetic heterogeneity and overlap observed in NDDs make it difficult to identify the genetic causes of specific clinical symptoms, such as seizures. METHODS: We present a computational method, MAGI-S, to discover modules or groups of highly connected genes that together potentially perform a similar biological function. MAGI-S integrates protein-protein interaction and co-expression networks to form modules centered around the selection of a single "seed" gene, yielding modules consisting of genes that are highly co-expressed with the seed gene. We aim to dissect the epilepsy phenotype from a general NDD phenotype by providing MAGI-S with high confidence NDD seed genes with varying degrees of association with epilepsy, and we assess the enrichment of de novo mutation, NDD-associated genes, and relevant biological function of constructed modules. RESULTS: The newly identified modules account for the increased rate of de novo non-synonymous mutations in autism, intellectual disability, developmental disability, and epilepsy, and enrichment of copy number variations (CNVs) in developmental disability. We also observed that modules seeded with genes strongly associated with epilepsy tend to have a higher association with epilepsy phenotypes than modules seeded at other neurodevelopmental disorder genes. Modules seeded with genes strongly associated with epilepsy (e.g., SCN1A, GABRA1, and KCNB1) are significantly associated with synaptic transmission, long-term potentiation, and calcium signaling pathways. On the other hand, modules found with seed genes that are not associated or weakly associated with epilepsy are mostly involved with RNA regulation and chromatin remodeling. CONCLUSIONS: In summary, our method identifies modules enriched with de novo non-synonymous mutations and can capture specific networks that underlie the epilepsy phenotype and display distinct enrichment in relevant biological processes. MAGI-S is available at https://github.com/jchow32/magi-s .


Assuntos
Epilepsia/genética , Redes Reguladoras de Genes , Heterogeneidade Genética , Transtornos do Neurodesenvolvimento/genética , Comorbidade , Bases de Dados Factuais , Epilepsia/epidemiologia , Humanos , Mutação , Transtornos do Neurodesenvolvimento/epidemiologia , Fenótipo , Prognóstico
18.
Nat Commun ; 10(1): 4054, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492842

RESUMO

Transposable elements (TE) comprise roughly half of the human genome. Though initially derided as junk DNA, they have been widely hypothesized to contribute to the evolution of gene regulation. However, the contribution of TE to the genetic architecture of diseases remains unknown. Here, we analyze data from 41 independent diseases and complex traits to draw three conclusions. First, TE are uniquely informative for disease heritability. Despite overall depletion for heritability (54% of SNPs, 39 ± 2% of heritability), TE explain substantially more heritability than expected based on their depletion for known functional annotations. This implies that TE acquire function in ways that differ from known functional annotations. Second, older TE contribute more to disease heritability, consistent with acquiring biological function. Third, Short Interspersed Nuclear Elements (SINE) are far more enriched for blood traits than for other traits. Our results can help elucidate the biological roles that TE play in the genetic architecture of diseases.


Assuntos
Elementos de DNA Transponíveis/genética , Doença/genética , Regulação da Expressão Gênica , Genoma Humano/genética , Padrões de Herança/genética , Retroelementos/genética , Algoritmos , Doenças Autoimunes/sangue , Doenças Autoimunes/genética , Encefalopatias/sangue , Encefalopatias/genética , Evolução Molecular , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Elementos Nucleotídeos Curtos e Dispersos/genética
19.
Am J Hum Genet ; 105(3): 456-476, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31402091

RESUMO

Complex traits and common diseases are extremely polygenic, their heritability spread across thousands of loci. One possible explanation is that thousands of genes and loci have similarly important biological effects when mutated. However, we hypothesize that for most complex traits, relatively few genes and loci are critical, and negative selection-purging large-effect mutations in these regions-leaves behind common-variant associations in thousands of less critical regions instead. We refer to this phenomenon as flattening. To quantify its effects, we introduce a mathematical definition of polygenicity, the effective number of independently associated SNPs (Me), which describes how evenly the heritability of a trait is spread across the genome. We developed a method, stratified LD fourth moments regression (S-LD4M), to estimate Me, validating that it produces robust estimates in simulations. Analyzing 33 complex traits (average N = 361k), we determined that heritability is spread ∼4× more evenly among common SNPs than among low-frequency SNPs. This difference, together with evolutionary modeling of new mutations, suggests that complex traits would be orders of magnitude less polygenic if not for the influence of negative selection. We also determined that heritability is spread more evenly within functionally important regions in proportion to their heritability enrichment; functionally important regions do not harbor common SNPs with greatly increased causal effect sizes, due to selective constraint. Our results suggest that for most complex traits, the genes and loci with the most critical biological effects often differ from those with the strongest common-variant associations.


Assuntos
Herança Multifatorial , Seleção Genética , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
20.
Am J Hum Genet ; 104(5): 896-913, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051114

RESUMO

Recent studies have highlighted the role of gene networks in disease biology. To formally assess this, we constructed a broad set of pathway, network, and pathway+network annotations and applied stratified LD score regression to 42 diseases and complex traits (average N = 323K) to identify enriched annotations. First, we analyzed 18,119 biological pathways. We identified 156 pathway-trait pairs whose disease enrichment was statistically significant (FDR < 5%) after conditioning on all genes and 75 known functional annotations (from the baseline-LD model), a stringent step that greatly reduced the number of pathways detected; most significant pathway-trait pairs were previously unreported. Next, for each of four published gene networks, we constructed probabilistic annotations based on network connectivity. For each gene network, the network connectivity annotation was strongly significantly enriched. Surprisingly, the enrichments were fully explained by excess overlap between network annotations and regulatory annotations from the baseline-LD model, validating the informativeness of the baseline-LD model and emphasizing the importance of accounting for regulatory annotations in gene network analyses. Finally, for each of the 156 enriched pathway-trait pairs, for each of the four gene networks, we constructed pathway+network annotations by annotating genes with high network connectivity to the input pathway. For each gene network, these pathway+network annotations were strongly significantly enriched for the corresponding traits. Once again, the enrichments were largely explained by the baseline-LD model. In conclusion, gene network connectivity is highly informative for disease architectures, but the information in gene networks may be subsumed by regulatory annotations, emphasizing the importance of accounting for known annotations.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Genes/genética , Doenças Genéticas Inatas/genética , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Humanos , Anotação de Sequência Molecular , Fenótipo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...