RESUMO
The glycoprotein APA (Alanine- and Proline-rich Antigen, a 45/47 kDa antigen complex, Rv1860) is considered as a major immunodominant antigen secreted by M. tuberculosis. This antigen has proved to be highly immunogenic in experimental models and humans, presenting a significant potential for further development of a new vaccine for tuberculosis. Glycosylation plays a key role in the immunogenicity of the APA protein. Because plants are known to promote post-translational modification such as glycosylation and to be one of the most economic and safe hosts for recombinant protein expression, we have over expressed the APA protein in transgenic tobacco plants aiming to produce a glycosylated version of the protein. Seeds are known to be a well-suited organ to accumulate recombinant proteins, due to low protease activity and higher protein stability. We used a seed-specific promoter from sorghum, a signal peptide to target the protein to the endoplasmic reticulum and ultimately in the protein storage vacuoles. We show that the recombinant protein accumulated in the seeds had similar isoelectric point and molecular weight compared with the native protein. These findings demonstrate the ability of tobacco plants to produce glycosylated APA protein, opening the way for the development of secure, effective and versatile vaccines or therapeutic proteins against tuberculosis.
RESUMO
The glycoprotein APA (Alanine- and Proline-rich Antigen, a 45/47 kDa antigen complex, Rv1860) is considered as a major immunodominant antigen secreted by M. tuberculosis. This antigen has proved to be highly immunogenic in experimental models and humans, presenting a significant potential for further development of a new vaccine for tuberculosis. Glycosylation plays a key role in the immunogenicity of the APA protein. Because plants are known to promote post-translational modification such as glycosylation and to be one of the most economic and safe hosts for recombinant protein expression, we have over expressed the APA protein in transgenic tobacco plants aiming to produce a glycosylated version of the protein. Seeds are known to be a well-suited organ to accumulate recombinant proteins, due to low protease activity and higher protein stability. We used a seed-specific promoter from sorghum, a signal peptide to target the protein to the endoplasmic reticulum and ultimately in the protein storage vacuoles. We show that the recombinant protein accumulated in the seeds had similar isoelectric point and molecular weight compared with the native protein. These findings demonstrate the ability of tobacco plants to produce glycosylated APA protein, opening the way for the development of secure, effective and versatile vaccines or therapeutic proteins against tuberculosis.
RESUMO
Mycobacterium bovis BCG prime DNA (Mycobacterium tuberculosis genes)-booster vaccinations have been shown to induce greater protection against tuberculosis (TB) than BCG alone. This heterologous prime-boost strategy is perhaps the most realistic vaccination for the future of TB infection control, especially in countries where TB is endemic. Moreover, a prime-boost regimen using biodegradable microspheres seems to be a promising immunization to stimulate a long-lasting immune response. The alanine proline antigen (Apa) is a highly immunogenic glycoprotein secreted by M. tuberculosis. This study investigated the immune protection of Apa DNA vaccine against intratracheal M. tuberculosis challenge in mice on the basis of a heterologous prime-boost regimen. BALB/c mice were subcutaneously primed with BCG and intramuscularly boosted with a single dose of plasmid carrying apa and 6,6'-trehalose dimycolate (TDM) adjuvant, coencapsulated in microspheres (BCG-APA), and were evaluated 30 and 70 days after challenge. This prime-boost strategy (BCG-APA) resulted in a significant reduction in the bacterial load in the lungs, thus leading to better preservation of the lung parenchyma, 70 days postinfection compared to BCG vaccinated mice. The profound effect of this heterologous prime-boost regimen in the experimental model supports its development as a feasible strategy for prevention of TB.
Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos de Bactérias/imunologia , Fatores Corda/administração & dosagem , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/prevenção & controle , Vacinas de DNA/imunologia , Animais , Antígenos de Bactérias/genética , Carga Bacteriana , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Feminino , Humanos , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Microesferas , Mycobacterium tuberculosis/genética , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/genética , Tuberculose Pulmonar/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genéticaRESUMO
CD4(+) Foxp3(+) regulatory T cells inhibit the production of interferon-γ, which is the major mediator of protection against Mycobacterium tuberculosis infection. In this study, we evaluated whether the protection conferred by three different vaccines against tuberculosis was associated with the number of spleen and lung regulatory T cells. We observed that after homologous immunization with the 65 000 molecular weight heat-shock protein (hsp 65) DNA vaccine, there was a significantly higher number of spleen CD4(+) Foxp3(+) cells compared with non-immunized mice. Heterologous immunization using bacillus Calmette-Guérin (BCG) to prime and DNA-hsp 65 to boost (BCG/DNA-hsp 65) or BCG to prime and culture filtrate proteins (CFP)-CpG to boost (BCG/CFP-CpG) induced a significantly higher ratio of spleen CD4(+) /CD4(+) Foxp3(+) cells compared with non-immunized mice. In addition, the protection conferred by either the BCG/DNA-hsp 65 or the BCG/CFP-CpG vaccines was significant compared with the DNA-hsp 65 vaccine. Despite the higher ratio of spleen CD4(+) /CD4(+) Foxp3(+) cells found in BCG/DNA-hsp 65-immunized or BCG/CFP-CpG-immunized mice, the lungs of both groups of mice were better preserved than those of DNA-hsp 65-immunized mice. These results confirm the protective efficacy of BCG/DNA-hsp 65 and BCG/CFP-CpG heterologous prime-boost vaccines and the DNA-hsp 65 homologous vaccine. Additionally, the prime-boost regimens assayed here represent a promising strategy for the development of new vaccines to protect against tuberculosis because they probably induce a proper ratio of CD4(+) and regulatory (CD4(+) Foxp3(+) ) cells during the immunization regimen. In this study, this ratio was associated with a reduced number of regulatory cells and no injury to the lungs.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinas de DNA/imunologia , Animais , Proteínas de Bactérias/imunologia , Chaperonina 60/imunologia , Feminino , Fatores de Transcrição Forkhead/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/imunologia , Baço/imunologia , Tuberculose/imunologia , Tuberculose/patologiaRESUMO
Epidemiological and experimental evidence supports the notion that microbial infections that are known to induce Th1-type immune responses can suppress Th2 immune responses, which are characteristics of allergic disorders. However, live microbial immunization might not be feasible for human immunotherapy. Here, we evaluated whether induction of Th1 immunity by the immunostimulatory sequences of CpG-oligodeoxynucleotides (CpG-ODN), with or without culture filtrate proteins (CFP), from Mycobacterium tuberculosis would suppress ongoing allergic lung disease. Presensitized and ovalbumin (OVA)-challenged mice were treated subcutaneously with CpG, or CpG in combination with CFP (CpG/CFP). After 15 days of treatment, airway inflammation and specific T- and B-cell responses were determined. Cell transfer experiments were also performed. CpG treatment attenuated airway allergic disease; however, the combination CpG/CFP treatment was significantly more effective in decreasing airway hyperresponsiveness, eosinophilia and Th2 response. When an additional intranasal dose of CFP was given, allergy was even more attenuated. The CpG/CFP therapy also reduced allergen-specific IgG1 and IgE antibodies and increased IgG2a. Transfer of spleen cells from mice immunized with CpG/CFP also reduced allergic lung inflammation. CpG/CFP treatment induced CFP-specific production of IFN-γ and IL-10 by spleen cells and increased production of IFN-γ in response to OVA. The essential role of IFN-γ for the therapeutic effect of CpG/CFP was evidenced in IFN-γ knockout mice. These results show that CpG/CFP treatment reverses established Th2 allergic responses by an IFN-γ-dependent mechanism that seems to act both locally in the lung and systemically to decrease allergen-specific Th2 responses.
Assuntos
Antígenos de Bactérias/imunologia , Hipersensibilidade/terapia , Imunoterapia/métodos , Interferon gama/imunologia , Pneumopatias/terapia , Mycobacterium tuberculosis/imunologia , Oligodesoxirribonucleotídeos/imunologia , Oligodesoxirribonucleotídeos/uso terapêutico , Transferência Adotiva , Animais , Antígenos de Bactérias/farmacologia , Antígenos de Bactérias/uso terapêutico , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/biossíntese , Eosinofilia/tratamento farmacológico , Feminino , Hipersensibilidade/imunologia , Imunoglobulina E/biossíntese , Imunoglobulina G/biossíntese , Interferon gama/biossíntese , Interleucina-10/biossíntese , Pneumopatias/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodesoxirribonucleotídeos/administração & dosagem , Ovalbumina/imunologia , Baço/metabolismo , Células Th1/imunologia , Células Th2/imunologiaRESUMO
Culture filtrate proteins (CFP) are potential targets for tuberculosis vaccine development. We previously showed that despite the high level of gamma interferon (IFN-gamma) production elicited by homologous immunization with CFP plus CpG oligodeoxynucleotides (CFP/CpG), we did not observe protection when these mice were challenged with Mycobacterium tuberculosis. In order to use the IFN-gamma-inducing ability of CFP antigens, in this study we evaluated a prime-boost heterologous immunization based on CFP/CpG to boost Mycobacterium bovis BCG vaccination in order to find an immunization schedule that could induce protection. Heterologous BCG-CFP/CpG immunization provided significant protection against experimental tuberculosis, and this protection was sustained during the late phase of infection and was even better than that conferred by a single BCG immunization. The protection was associated with high levels of antigen-specific IFN-gamma and interleukin-17 (IL-17) and low IL-4 production. The deleterious role of IL-4 was confirmed when IL-4 knockout mice vaccinated with CFP/CpG showed consistent protection similar to that elicited by BCG-CFP/CpG heterologous immunization. These findings show that a single dose of CFP/CpG can represent a new strategy to boost the protection conferred by BCG vaccination. Moreover, different immunological parameters, such as IFN-gamma and IL-17 and tightly regulated IL-4 secretion, seem to contribute to the efficacy of this tuberculosis vaccine.
Assuntos
Proteínas de Bactérias/imunologia , Imunização Secundária/métodos , Interleucina-4/antagonistas & inibidores , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Contagem de Colônia Microbiana , Feminino , Deleção de Genes , Interferon gama/imunologia , Interleucina-17/imunologia , Interleucina-4/deficiência , Interleucina-4/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tuberculose/prevenção & controleRESUMO
The results of various animal model studies of tuberculosis (TB) suggest that culture filtrate proteins (CFPs), which are antigens secreted by Mycobacterium tuberculosis, are largely responsible for improvements in TB vaccines. The great obstacle to developing protein subunit vaccines is that adjuvants are required in order to stimulate relevant protective immune responses. Acting as immune adjuvants, CpG-oligodeoxynucleotides (CpG-ODNs) promote the activation of Th1 cells and of pro-inflammatory cytokines. To evaluate the adjuvant role of CpG-ODNs in conferring enhanced immunogenic capacity and protection against M. tuberculosis, we immunized mice with CFP antigen combined with synthetic CpG-ODNs (CFP/CpG) or with incomplete Freund's adjuvant (IFA) (CFP/IFA). Immunization with CFP/CpG induced a T helper 1 (Th1)-biased response accompanied by a higher immunoglobulin G2a (IgG2a) antibody/IgG1 antibody ratio, elevated production of interferon-gamma (IFN-gamma) by spleen cells and in lungs. However, CFP/IFA-immunized mice presented higher levels of IgG1 antibodies, as well as increased production of IFN-gamma, interleukin (IL)-5, and IL-10 by spleen cells, together with lower levels of IFN-gamma in the lungs. Despite the stronger Th1 response seen in both groups, believed to be necessary for protection against TB, only mice immunized with CFP/IFA were protected after M. tuberculosis infection. Lung histology revealed that lung parenchyma were better preserved in CFP/IFA-immunized mice, which also presented intense lymphocyte recruitment to the lesion, whereas CFP/CpG-immunized mice presented severe pulmonary injury accompanied by necrosis. Based on the data presented, we discuss the widely accepted paradigm that high levels of IFN-gamma are directly correlated with protection against experimental TB.