Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422375

RESUMO

Recent research has demonstrated that hybrid linear flow channel reactors (HLFCRs) can desulfurize tannery effluent via sulfate reduction and concurrent oxidation of sulfide to elemental sulfur. The reactors can be used to pre-treat tannery effluent to improve the efficiency of downstream anaerobic digestion and recover sulfur. This study was conducted to gain insight into the bacterial communities in HLFCRs operated in series and identify structure-function relationships. This was accomplished by interpreting the results obtained from amplicon sequencing of the 16S rRNA gene and quantification of the dissimilatory sulfite reducing (dsrB) gene. In an effort to provide a suitable inoculum, microbial consortia were harvested from saline estuaries and enriched. However, it was found that bioaugmentation was not necessary because native communities from tannery wastewater were selected over exogenous communities from the enriched consortia. Overall, Dethiosulfovibrio sp. and Petrimonas sp. were strongly selected (maximum relative abundances of 29% and 26%, respectively), while Desulfobacterium autotrophicum (57%), and Desulfobacter halotolerans (27%) dominated the sulfate reducing bacteria. The presence of elemental sulfur reducing genera such as Dethiosulfovibrio and Petrimonas is not desirable in HLFCRs, and strategies to counter their selection need to be considered to ensure efficiency of these systems for pre-treatment of tannery effluent.

2.
J Anim Sci ; 100(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772755

RESUMO

Extremes in body condition reduce fertility and overall productivity in beef cattle herds, due in part to altered systemic metabolic conditions that influence the intrafollicular and uterine environment. Follicular fluid and serum metabolome profiles are influenced by body composition in women and dairy cattle; however, such information is lacking in beef cattle. We hypothesized that body condition score (BCS)-related alterations in the metabolome of preovulatory follicular fluid and serum may influence oocyte maturation while impacting the oviductal or uterine environment. Therefore, we performed a study with the objective to determine the relationship between BCS and the metabolome of follicular fluid and serum in lactating beef cattle. We synchronized the development of a preovulatory follicle in 130 cows of varying BCS. We collected blood and performed transvaginal follicle aspirations to collect follicular fluid from the preovulatory follicle ~18 h after gonadotropin-releasing hormone administration to stimulate the preovulatory gonadotropin surge. We then selected follicular fluid and serum samples from cows with BCS 4 (Thin; n = 14), BCS 6 (Moderate; n = 18), or BCS >8 (Obese; n = 14) for ultra-high performance liquid chromatography-high resolution mass spectrometry. We identified differences in the follicular fluid or serum of thin, moderate, and obese animals based on multiple linear regression. MetaboAnalyst 5.0 was used for enrichment analysis of significant metabolites. We identified 38 metabolites in follicular fluid and 49 metabolites in serum. There were no significant differences in follicular fluid metabolite content among BCS classifications. There were 5, 22, and 1 serum metabolites differentially abundant between thin-obese, moderate-thin, and moderate-obese classifications, respectively (false discovery rate [FDR] < 0.10). These metabolites were enriched in multiple processes including "arginine biosynthesis," "arginine/proline metabolism," and "D-glutamine/D-glutamate metabolism" (FDR < 0.04). Pathways enriched with serum metabolites associated with BCS indicate potentially increased reactive oxygen species (ROS) in serum of thin cows. ROS crossing the blood follicular barrier may negatively impact the oocyte during oocyte maturation and contribute to the reduced pregnancy rates observed in thin beef cows.


Extremes in body condition affect fertility and pregnancy outcomes in beef cows. Much research has been done in women and dairy cows to evaluate body condition's effect on oocyte and embryo quality, pregnancy rates, and pregnancy outcomes. However, little work of this type has been done in beef cows and most studies do not focus on the preovulatory time period. The preovulatory time period is an essential time for the oocyte, as final stages of prematuration and the completion of oocyte maturation take place in the peri-ovulatory follicle. The follicular fluid provides the microenvironment for oocyte maturation and exchanges substances with maternal circulation at the blood follicular barrier. Alterations in maternal circulation due to extremes in body condition may pass into the follicular fluid and affect the oocyte during the preovulatory time period. Such conditions may contribute to the reduced fertility seen in beef cows with extreme body condition.


Assuntos
Doenças dos Bovinos , Líquido Folicular , Animais , Arginina/metabolismo , Bovinos , Doenças dos Bovinos/metabolismo , Feminino , Líquido Folicular/metabolismo , Humanos , Lactação , Metaboloma , Obesidade/metabolismo , Obesidade/veterinária , Gravidez , Espécies Reativas de Oxigênio/metabolismo
3.
Metabolites ; 11(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34564438

RESUMO

Induced ovulation of small pre-ovulatory follicles reduced pregnancy rates, embryo survival, day seven embryo quality, and successful embryo cleavage in beef cows undergoing fixed-time artificial insemination. RNA-sequencing of oocytes and associated cumulus cells collected from pre-ovulatory follicles 23 h after gonadotropin-releasing hormone (GnRH) administration to induce the pre-ovulatory gonadotropin surge suggested reduced capacity for glucose metabolism in cumulus cells of follicles ≤11.7 mm. We hypothesized that the follicular fluid metabolome influences metabolic capacity of the cumulus-oocyte complex and contributes to reduced embryo cleavage and quality grade observed following induced ovulation of small follicles. Therefore, we performed a study to determine the correlation between pre-ovulatory follicle diameter and follicular fluid metabolome profiles in lactating beef cows (Angus, n = 130). We synchronized the development of a pre-ovulatory follicle and collected the follicular contents approximately 20 h after GnRH administration. We then performed ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) metabolomic studies on 43 follicular fluid samples and identified 38 metabolites within pre-ovulatory follicles of increasing size. We detected 18 metabolites with a significant, positive correlation to follicle diameter. Individual and pathway enrichment analysis of significantly correlated metabolites suggest that altered glucose and amino acid metabolism likely contribute to reduced developmental competence of oocytes when small pre-ovulatory follicles undergo induced ovulation.

4.
J Environ Manage ; 298: 113440, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352478

RESUMO

The solidification of copper mine tailings was investigated by using the natural biological process known as microbial induced calcium carbonate precipitation (MICP) as a potential method to valorize this waste stream. A submergent method was used to grow bio-columns and the toxicity of copper on Sporosarcina pasteurii (the ureolytic bacteria which drives the MICP process) was investigated. The bio-columns produced from copper mine tailings had a compressive strength of 0.54 MPa, lower than bio-columns produced from beach sand (1.85 MPa). The low porosity of the copper mine tailings limited the depth to which the MICP reaction could successfully occur, resulting in a 1.8 mm ± 0.4 mm crust forming around the outer extremities of the bio-columns. The results demonstrated that the particle size was a key deciding factor and that, as a result, MICP is not suitable for producing 'thick' bio-cemented materials from small particles (<100 µm) such as mine tailings. However, this method could produce thinner material such as bio-tiles or it could even be used to potentially cement together toxic dust particles typically formed on mine tailing heaps.


Assuntos
Carbonato de Cálcio , Sporosarcina , Cobre , Mineração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...