Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 21(8): 997-1004, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17438002

RESUMO

Post-translational modification of nucleosomal histones has been suggested to contribute to epigenetic transcriptional memory. We describe a case of transcriptional memory in yeast where the rate of transcriptional induction of GAL1 is regulated by the prior expression state. This epigenetic state is inherited by daughter cells, but does not require the histone acetyltransferase, Gcn5p, the histone ubiquitinylating enzyme, Rad6p, or the histone methylases, Dot1p, Set1p, or Set2p. In contrast, we show that the ATP-dependent chromatin remodeling enzyme, SWI/SNF, is essential for transcriptional memory at GAL1. Genetic studies indicate that SWI/SNF controls transcriptional memory by antagonizing ISWI-like chromatin remodeling enzymes.


Assuntos
Galactoquinase/genética , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Adenosina Trifosfatases/metabolismo , Genes Fúngicos , Glucose/metabolismo , Histonas/metabolismo , Família Multigênica , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
2.
Chromosome Res ; 14(1): 83-94, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16506098

RESUMO

The organization of eukaryotic genomes requires a harmony between efficient compaction and accessibility. This is achieved through its packaging into chromatin. Chromatin can be subdivided into two general structural and functional compartments: euchromatin and heterochromatin. Euchromatin comprises most of the expressed genome, while heterochromatin participates intimately in the production of structures such as centromeres and telomeres essential for chromosome function. Studies in the fission yeast Schizosaccharomyces pombe have begun to highlight the genetic pathways critical for the assembly and epigenetic maintenance of heterochromatin, including key roles played by the RNAi machinery, H3 lysine 9 methylation and heterochromatin protein 1 (HP1). Recent studies have also identified a novel E3 ubiquitin ligase universally required for H3 K9 methylation. Here we outline these studies and propose several models for the role of this E3 ligase in heterochromatin assembly.


Assuntos
DNA/metabolismo , Inativação Gênica , Heterocromatina/metabolismo , Histonas/metabolismo , Animais , Centrômero/metabolismo , DNA/química , DNA/genética , Epigênese Genética , Heterocromatina/química , Histona Desacetilases/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Humanos , Metilação , Proteínas Metiltransferases , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Genes Dev ; 19(14): 1705-14, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16024659

RESUMO

Heterochromatin is critical for proper centromere and telomere function, and it plays a key role in the transcriptional silencing of specific genomic loci. In fission yeast, the Rik1 protein functions with the Clr4 histone methyltransferase at an early step in heterochromatin formation. Here, we use mass spectrometry and tandem affinity purification of a Rik1-TAP fusion protein to identify Rik1-associated proteins. These studies identify two novel proteins, Raf1 and Raf2, which we find are required for H3-K9 methylation and for transcriptional silencing within centromeric heterochromatin. We also find that subunits of a cullin-dependent E3 ubiquitin ligase are associated with Rik1 and Clr4, and Rik1-TAP preparations exhibit robust E3 ubiquitin ligase activity. Furthermore, expression of a dominant-negative allele of the Pcu4 cullin subunit disrupts regulation of K4 methylation within heterochromatin. These studies provide evidence for a novel Rik1-associated E3 ubiquitin ligase that is required for heterochromatin formation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas Culina/metabolismo , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Culina/genética , Genes Fúngicos , Heterocromatina/genética , Histona-Lisina N-Metiltransferase , Metiltransferases/genética , Metiltransferases/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Subunidades Proteicas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
4.
Science ; 297(5588): 1824-7, 2002 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-12228709

RESUMO

Eukaryotic genomes are organized into condensed, heterogeneous chromatin fibers throughout much of the cell cycle. Here we describe recent studies indicating that even transcriptionally active loci may be encompassed within 80- to 100-nanometer-thick chromonema fibers. These studies suggest that chromatin higher order folding may be a key feature of eukaryotic transcriptional control. We also discuss evidence suggesting that adenosine-5'-triphosphate-dependent chromatin-remodeling enzymes and histone-modifying enzymes may regulate transcription by controlling the extent and dynamics of chromatin higher order folding.


Assuntos
Cromatina/química , Cromatina/metabolismo , Histonas/química , Nucleossomos/química , Proteínas de Saccharomyces cerevisiae , Transcrição Gênica , Acetiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ciclo Celular , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA/química , DNA/metabolismo , Histona Acetiltransferases , Histonas/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
5.
Nat Struct Biol ; 9(4): 263-7, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11887184

RESUMO

Members of the ATP-dependent family of chromatin remodeling enzymes play key roles in the regulation of transcription, development, DNA repair and cell cycle control. We find that the remodeling activities of the ySWI/SNF, hSWI/SNF, xMi-2 and xACF complexes are nearly abolished by incorporation of linker histones into nucleosomal array substrates. Much of this inhibition is independent of linker histone-induced folding of the arrays. We also find that phosphorylation of the linker histone by Cdc2/Cyclin B kinase can rescue remodeling by ySWI/SNF. These results suggest that linker histones exert a global, genome-wide control over remodeling activities, implicating a new, obligatory coupling between linker histone kinases and ATP-dependent remodeling enzymes.


Assuntos
Trifosfato de Adenosina/metabolismo , Cromatina/química , Cromatina/enzimologia , Citidina Desaminase , DNA Helicases , Histonas/metabolismo , Conformação de Ácido Nucleico , Desaminase APOBEC-1 , Adenosina Trifosfatases/metabolismo , Animais , Autoantígenos/metabolismo , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Fosforilação , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Xenopus laevis , Leveduras
6.
Nat Struct Biol ; 9(3): 167-71, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11836537

RESUMO

The SIN domain within histones H3 and H4 is defined by a set of single amino acid substitutions that were initially identified as mutations that alleviate the transcriptional defects associated with inactivation of the SWI/SNF chromatin remodeling complex. Here we use recombinant histones to investigate how Sin- versions of H4 alter the structure of nucleosomal arrays. We find that an R45C substitution within the SIN domain of H4 does not disrupt nucleosome positioning nor does this Sin- version alter the accessibility of nucleosomal DNA. In contrast, we find that the R45C substitution eliminates Mg2+-dependent, intramolecular folding of the nucleosomal arrays. Our results suggest that Sin- versions of histones may alleviate the need for SWI/SNF in vivo by disrupting higher-order chromatin folding.


Assuntos
Histonas/química , Histonas/metabolismo , Proteínas Nucleares , Nucleossomos/química , Nucleossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Galinhas , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/genética , Magnésio/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , Nucleossomos/genética , Estrutura Terciária de Proteína/efeitos dos fármacos , RNA Ribossômico 5S/genética , Sais/farmacologia , Ouriços-do-Mar/genética , Moldes Genéticos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...