Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell Host Microbe ; 32(4): 506-526.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479397

RESUMO

To understand the dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune, and clinical markers of microbiomes from four body sites in 86 participants over 6 years. We found that microbiome stability and individuality are body-site specific and heavily influenced by the host. The stool and oral microbiome are more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. We identify individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlate across body sites, suggesting systemic dynamics influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals show altered microbial stability and associations among microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease.


Assuntos
Estabilidade Central , Microbiota , Humanos , Pele/microbiologia , Interações entre Hospedeiro e Microrganismos , Biomarcadores
2.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352363

RESUMO

To understand dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune and clinical markers of microbiomes from four body sites in 86 participants over six years. We found that microbiome stability and individuality are body-site-specific and heavily influenced by the host. The stool and oral microbiome were more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. Also, we identified individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlated across body sites, suggesting systemic coordination influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals showed altered microbial stability and associations between microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease. Study Highlights: The stability of the human microbiome varies among individuals and body sites.Highly individualized microbial genera are more stable over time.At each of the four body sites, systematic interactions between the environment, the host and bacteria can be detected.Individuals with insulin resistance have lower microbiome stability, a more diversified skin microbiome, and significantly altered host-microbiome interactions.

3.
Nat Biomed Eng ; 8(1): 11-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36658343

RESUMO

Current healthcare practices are reactive and use limited physiological and clinical information, often collected months or years apart. Moreover, the discovery and profiling of blood biomarkers in clinical and research settings are constrained by geographical barriers, the cost and inconvenience of in-clinic venepuncture, low sampling frequency and the low depth of molecular measurements. Here we describe a strategy for the frequent capture and analysis of thousands of metabolites, lipids, cytokines and proteins in 10 µl of blood alongside physiological information from wearable sensors. We show the advantages of such frequent and dense multi-omics microsampling in two applications: the assessment of the reactions to a complex mixture of dietary interventions, to discover individualized inflammatory and metabolic responses; and deep individualized profiling, to reveal large-scale molecular fluctuations as well as thousands of molecular relationships associated with intra-day physiological variations (in heart rate, for example) and with the levels of clinical biomarkers (specifically, glucose and cortisol) and of physical activity. Combining wearables and multi-omics microsampling for frequent and scalable omics may facilitate dynamic health profiling and biomarker discovery.


Assuntos
Multiômica , Biomarcadores
4.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693476

RESUMO

Background: The wide dynamic range of circulating proteins coupled with the diversity of proteoforms present in plasma has historically impeded comprehensive and quantitative characterization of the plasma proteome at scale. Automated nanoparticle (NP) protein corona-based proteomics workflows can efficiently compress the dynamic range of protein abundances into a mass spectrometry (MS)-accessible detection range. This enhances the depth and scalability of quantitative MS-based methods, which can elucidate the molecular mechanisms of biological processes, discover new protein biomarkers, and improve comprehensiveness of MS-based diagnostics. Methods: Investigating multi-species spike-in experiments and a cohort, we investigated fold-change accuracy, linearity, precision, and statistical power for the using the Proteograph™ Product Suite, a deep plasma proteomics workflow, in conjunction with multiple MS instruments. Results: We show that NP-based workflows enable accurate identification (false discovery rate of 1%) of more than 6,000 proteins from plasma (Orbitrap Astral) and, compared to a gold standard neat plasma workflow that is limited to the detection of hundreds of plasma proteins, facilitate quantification of more proteins with accurate fold-changes, high linearity, and precision. Furthermore, we demonstrate high statistical power for the discovery of biomarkers in small- and large-scale cohorts. Conclusions: The automated NP workflow enables high-throughput, deep, and quantitative plasma proteomics investigation with sufficient power to discover new biomarker signatures with a peptide level resolution.

5.
Nat Metab ; 5(9): 1578-1594, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37697054

RESUMO

Lipids can be of endogenous or exogenous origin and affect diverse biological functions, including cell membrane maintenance, energy management and cellular signalling. Here, we report >800 lipid species, many of which are associated with health-to-disease transitions in diabetes, ageing and inflammation, as well as cytokine-lipidome networks. We performed comprehensive longitudinal lipidomic profiling and analysed >1,500 plasma samples from 112 participants followed for up to 9 years (average 3.2 years) to define the distinct physiological roles of complex lipid subclasses, including large and small triacylglycerols, ester- and ether-linked phosphatidylethanolamines, lysophosphatidylcholines, lysophosphatidylethanolamines, cholesterol esters and ceramides. Our findings reveal dynamic changes in the plasma lipidome during respiratory viral infection, insulin resistance and ageing, suggesting that lipids may have roles in immune homoeostasis and inflammation regulation. Individuals with insulin resistance exhibit disturbed immune homoeostasis, altered associations between lipids and clinical markers, and accelerated changes in specific lipid subclasses during ageing. Our dataset based on longitudinal deep lipidome profiling offers insights into personalized ageing, metabolic health and inflammation, potentially guiding future monitoring and intervention strategies.


Assuntos
Resistência à Insulina , Humanos , Lipidômica , Envelhecimento , Ceramidas , Inflamação
6.
PLoS One ; 18(3): e0282821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36989217

RESUMO

Advancements in deep plasma proteomics are enabling high-resolution measurement of plasma proteoforms, which may reveal a rich source of novel biomarkers previously concealed by aggregated protein methods. Here, we analyze 188 plasma proteomes from non-small cell lung cancer subjects (NSCLC) and controls to identify NSCLC-associated protein isoforms by examining differentially abundant peptides as a proxy for isoform-specific exon usage. We find four proteins comprised of peptides with opposite patterns of abundance between cancer and control subjects. One of these proteins, BMP1, has known isoforms that can explain this differential pattern, for which the abundance of the NSCLC-associated isoform increases with stage of NSCLC progression. The presence of cancer and control-associated isoforms suggests differential regulation of BMP1 isoforms. The identified BMP1 isoforms have known functional differences, which may reveal insights into mechanisms impacting NSCLC disease progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Biomarcadores Tumorais/metabolismo , Isoformas de Proteínas/metabolismo , Peptídeos , Proteína Morfogenética Óssea 1
7.
Adv Mater ; 34(44): e2206008, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35986672

RESUMO

Introducing engineered nanoparticles (NPs) into a biofluid such as blood plasma leads to the formation of a selective and reproducible protein corona at the particle-protein interface, driven by the relationship between protein-NP affinity and protein abundance. This enables scalable systems that leverage protein-nano interactions to overcome current limitations of deep plasma proteomics in large cohorts. Here the importance of the protein to NP-surface ratio (P/NP) is demonstrated and protein corona formation dynamics are modeled, which determine the competition between proteins for binding. Tuning the P/NP ratio significantly modulates the protein corona composition, enhancing depth and precision of a fully automated NP-based deep proteomic workflow (Proteograph). By increasing the binding competition on engineered NPs, 1.2-1.7× more proteins with 1% false discovery rate are identified on the surface of each NP, and up to 3× more proteins compared to a standard plasma proteomics workflow. Moreover, the data suggest P/NP plays a significant role in determining the in vivo fate of nanomaterials in biomedical applications. Together, the study showcases the importance of P/NP as a key design element for biomaterials and nanomedicine in vivo and as a powerful tuning strategy for accurate, large-scale NP-based deep proteomic studies.


Assuntos
Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Proteoma , Proteômica , Nanopartículas/química , Nanomedicina
8.
Cell Host Microbe ; 30(6): 848-862.e7, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35483363

RESUMO

Dietary fibers act through the microbiome to improve cardiovascular health and prevent metabolic disorders and cancer. To understand the health benefits of dietary fiber supplementation, we investigated two popular purified fibers, arabinoxylan (AX) and long-chain inulin (LCI), and a mixture of five fibers. We present multiomic signatures of metabolomics, lipidomics, proteomics, metagenomics, a cytokine panel, and clinical measurements on healthy and insulin-resistant participants. Each fiber is associated with fiber-dependent biochemical and microbial responses. AX consumption associates with a significant reduction in LDL and an increase in bile acids, contributing to its observed cholesterol reduction. LCI is associated with an increase in Bifidobacterium. However, at the highest LCI dose, there is increased inflammation and elevation in the liver enzyme alanine aminotransferase. This study yields insights into the effects of fiber supplementation and the mechanisms behind fiber-induced cholesterol reduction, and it shows effects of individual, purified fibers on the microbiome.


Assuntos
Fibras na Dieta , Inulina , Bifidobacterium , Ácidos e Sais Biliares , Colesterol , Fibras na Dieta/metabolismo , Humanos , Inulina/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(11): e2106053119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275789

RESUMO

SignificanceDeep profiling of the plasma proteome at scale has been a challenge for traditional approaches. We achieve superior performance across the dimensions of precision, depth, and throughput using a panel of surface-functionalized superparamagnetic nanoparticles in comparison to conventional workflows for deep proteomics interrogation. Our automated workflow leverages competitive nanoparticle-protein binding equilibria that quantitatively compress the large dynamic range of proteomes to an accessible scale. Using machine learning, we dissect the contribution of individual physicochemical properties of nanoparticles to the composition of protein coronas. Our results suggest that nanoparticle functionalization can be tailored to protein sets. This work demonstrates the feasibility of deep, precise, unbiased plasma proteomics at a scale compatible with large-scale genomics enabling multiomic studies.


Assuntos
Proteínas Sanguíneas , Aprendizado Profundo , Nanopartículas , Proteômica , Proteínas Sanguíneas/química , Nanopartículas/química , Coroa de Proteína/química , Proteoma , Proteômica/métodos
10.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34933920

RESUMO

The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like ß-sheet proteins (ß proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, ß proteins interact with and sequester AP-3 µ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3µ1 expression ameliorates neurotoxicity caused by ß proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.


Assuntos
Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Mutação com Ganho de Função , Neurônios/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Proteínas Amiloidogênicas/ultraestrutura , Sobrevivência Celular/genética , Expressão Gênica , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Neurônios/ultraestrutura , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Transdução de Sinais
11.
Anal Chem ; 93(49): 16369-16378, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34859676

RESUMO

Modern biomarker and translational research as well as personalized health care studies rely heavily on powerful omics' technologies, including metabolomics and lipidomics. However, to translate metabolomics and lipidomics discoveries into a high-throughput clinical setting, standardization is of utmost importance. Here, we compared and benchmarked a quantitative lipidomics platform. The employed Lipidyzer platform is based on lipid class separation by means of differential mobility spectrometry with subsequent multiple reaction monitoring. Quantitation is achieved by the use of 54 deuterated internal standards and an automated informatics approach. We investigated the platform performance across nine laboratories using NIST SRM 1950-Metabolites in Frozen Human Plasma, and three NIST Candidate Reference Materials 8231-Frozen Human Plasma Suite for Metabolomics (high triglyceride, diabetic, and African-American plasma). In addition, we comparatively analyzed 59 plasma samples from individuals with familial hypercholesterolemia from a clinical cohort study. We provide evidence that the more practical methyl-tert-butyl ether extraction outperforms the classic Bligh and Dyer approach and compare our results with two previously published ring trials. In summary, we present standardized lipidomics protocols, allowing for the highly reproducible analysis of several hundred human plasma lipids, and present detailed molecular information for potentially disease relevant and ethnicity-related materials.


Assuntos
Laboratórios , Lipidômica , Estudos de Coortes , Humanos , Padrões de Referência , Análise Espectral
12.
Nucleic Acids Res ; 49(21): 12284-12305, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850154

RESUMO

Neurons critically rely on the functions of RNA-binding proteins to maintain their polarity and resistance to neurotoxic stress. HnRNP R has a diverse range of post-transcriptional regulatory functions and is important for neuronal development by regulating axon growth. Hnrnpr pre-mRNA undergoes alternative splicing giving rise to a full-length protein and a shorter isoform lacking its N-terminal acidic domain. To investigate functions selectively associated with the full-length hnRNP R isoform, we generated a Hnrnpr knockout mouse (Hnrnprtm1a/tm1a) in which expression of full-length hnRNP R was abolished while production of the truncated hnRNP R isoform was retained. Motoneurons cultured from Hnrnprtm1a/tm1a mice did not show any axonal growth defects but exhibited enhanced accumulation of double-strand breaks and an impaired DNA damage response upon exposure to genotoxic agents. Proteomic analysis of the hnRNP R interactome revealed the multifunctional protein Yb1 as a top interactor. Yb1-depleted motoneurons were defective in DNA damage repair. We show that Yb1 is recruited to chromatin upon DNA damage where it interacts with γ-H2AX, a mechanism that is dependent on full-length hnRNP R. Our findings thus suggest a novel role of hnRNP R in maintaining genomic integrity and highlight the function of its N-terminal acidic domain in this context.


Assuntos
Cromatina/genética , Dano ao DNA , Reparo do DNA/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Neurônios Motores/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Animais , Axônios/metabolismo , Linhagem Celular , Células Cultivadas , Cromatina/metabolismo , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Immunoblotting , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/citologia , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo
13.
J Am Soc Mass Spectrom ; 32(11): 2655-2663, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34637296

RESUMO

Differential mobility spectrometry (DMS) is highly useful for shotgun lipidomic analysis because it overcomes difficulties in measuring isobaric species within a complex lipid sample and allows for acyl tail characterization of phospholipid species. Despite these advantages, the resulting workflow presents technical challenges, including the need to tune the DMS before every batch to update compensative voltages settings within the method. The Sciex Lipidyzer platform uses a Sciex 5500 QTRAP with a DMS (SelexION), an LC system configured for direction infusion experiments, an extensive set of standards designed for quantitative lipidomics, and a software package (Lipidyzer Workflow Manager) that facilitates the workflow and rapidly analyzes the data. Although the Lipidyzer platform remains very useful for DMS-based shotgun lipidomics, the software is no longer updated for current versions of Analyst and Windows. Furthermore, the software is fixed to a single workflow and cannot take advantage of new lipidomics standards or analyze additional lipid species. To address this multitude of issues, we developed Shotgun Lipidomics Assistant (SLA), a Python-based application that facilitates DMS-based lipidomics workflows. SLA provides the user with flexibility in adding and subtracting lipid and standard MRMs. It can report quantitative lipidomics results from raw data in minutes, comparable to the Lipidyzer software. We show that SLA facilitates an expanded lipidomics analysis that measures over 1450 lipid species across 17 (sub)classes. Lastly, we demonstrate that the SLA performs isotope correction, a feature that was absent from the original software.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Lipidômica/métodos , Animais , Análise de Injeção de Fluxo , Lipídeos/análise , Lipídeos/química , Macrófagos , Camundongos , Software , Fluxo de Trabalho
14.
Mol Syst Biol ; 17(7): e10125, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34318608

RESUMO

Cells signal through rearrangements of protein communities governed by covalent modifications and reversible interactions of distinct sets of proteins. A method that identifies those post-transcriptional modifications regulating signaling complex composition and functional phenotypes in one experimental setup would facilitate an efficient identification of novel molecular signaling checkpoints. Here, we devised modifications, interactions and phenotypes by affinity purification mass spectrometry (MIP-APMS), comprising the streamlined cloning and transduction of tagged proteins into functionalized reporter cells as well as affinity chromatography, followed by MS-based quantification. We report the time-resolved interplay of more than 50 previously undescribed modification and hundreds of protein-protein interactions of 19 immune protein complexes in monocytes. Validation of interdependencies between covalent, reversible, and functional protein complex regulations by knockout or site-specific mutation revealed ISGylation and phosphorylation of TRAF2 as well as ARHGEF18 interaction in Toll-like receptor 2 signaling. Moreover, we identify distinct mechanisms of action for small molecule inhibitors of p38 (MAPK14). Our method provides a fast and cost-effective pipeline for the molecular interrogation of protein communities in diverse biological systems and primary cells.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica , Complexo Antígeno-Anticorpo , Espectrometria de Massas , Fenótipo
15.
Nat Genet ; 53(5): 638-649, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33859415

RESUMO

A central question in the post-genomic era is how genes interact to form biological pathways. Measurements of gene dependency across hundreds of cell lines have been used to cluster genes into 'co-essential' pathways, but this approach has been limited by ubiquitous false positives. In the present study, we develop a statistical method that enables robust identification of gene co-essentiality and yields a genome-wide set of functional modules. This atlas recapitulates diverse pathways and protein complexes, and predicts the functions of 108 uncharacterized genes. Validating top predictions, we show that TMEM189 encodes plasmanylethanolamine desaturase, a key enzyme for plasmalogen synthesis. We also show that C15orf57 encodes a protein that binds the AP2 complex, localizes to clathrin-coated pits and enables efficient transferrin uptake. Finally, we provide an interactive webtool for the community to explore our results, which establish co-essentiality profiling as a powerful resource for biological pathway identification and discovery of new gene functions.


Assuntos
Redes Reguladoras de Genes , Genes , Genoma , Clatrina/metabolismo , Endocitose , Epigênese Genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Anotação de Sequência Molecular , Neoplasias/genética , Plasmalogênios/biossíntese , Transdução de Sinais/genética
16.
Acc Chem Res ; 54(2): 291-301, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33180454

RESUMO

Understanding the interactions between nanomaterials and biological systems plays a pivotal role in enhancing the efficacy of nanomedicine and advancing the disease diagnosis. The nanoparticle-protein corona, an active biomolecular layer, is formed around nanoparticles (NPs) upon mixing with biological fluid. The surface layer which consists of rapidly exchanged biomolecules is called the "soft" corona. The inner layer which is more stable and tightly packed is called the "hard" corona. It has been suggested that the NP-protein corona has a decisive effect on the in vivo fate of nanomedicine upon intravenously administration into the mouse. Furthermore, the features of the NP-protein corona make it a powerful platform to enrich low-abundance proteins from serum/plasma for downstream mass-spectrometry (MS)-based proteomics for biomarker discovery and disease diagnosis.Herein, we summarize our recent work on the development of nanomedicine and disease detection from the level of nano-bio interactions between nanoparticles and biological systems. Nanomedicine has made substantial progress over the past two decades. However, the significant enhancement of overall patient survival by nanomedicine remains a challenge due to the lack of a deep understanding of nano-bio interactions in the clinical setting. The pharmacokinetic effect of the protein corona on PEGylated NPs during blood circulation indicated that the adsorbed apolipoproteins could prolong the circulation time of NPs. This mechanistic understanding of the protein corona (active biomolecule) formed around polymeric NPs offered insights into enhancing the efficacy of nanomedicine from the biological interactions point of view. Moreover, we discuss the basic rationale for developing bioresponsive cancer nanomedicine by exploiting the pathophysiological environment around the tumor, typically the pH, reactive oxygen species (ROS), and redox-responsive supramolecular motifs based on synthetic amphiphilic polymers. The protein corona in vivo determines the biological fate of NPs, whereas it opens a new avenue to enrich low abundant proteins in a biospecimen ex vivo to render them "visible" for downstream analytical workflows, such as MS-based proteomics. Blood serum/plasma, due to easy accessibility and great potential to uncover and monitor physiological and pathological changes in health and disease, has remained a major source of detecting protein biomarker candidates. Inspired by the features of the NP-protein corona, a Proteograph platform, which integrates multi-NP-protein coronas with MS for large-scale efficient and deep proteome profiling has been developed. Finally, we conclude this Account with a better understanding of nano-bio interactions to accelerate the nanomedicine translation and how MS-based proteomics can boost our understanding of the corona composition and facilitate the identification of disease biomarkers.


Assuntos
Nanopartículas/química , Coroa de Proteína/química , Animais , Portadores de Fármacos/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética , Camundongos , Microscopia Confocal , Nanomedicina , Nanopartículas/metabolismo , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxirredução , Polietilenoglicóis/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Nat Commun ; 11(1): 3662, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699280

RESUMO

Large-scale, unbiased proteomics studies are constrained by the complexity of the plasma proteome. Here we report a highly parallel protein quantitation platform integrating nanoparticle (NP) protein coronas with liquid chromatography-mass spectrometry for efficient proteomic profiling. A protein corona is a protein layer adsorbed onto NPs upon contact with biofluids. Varying the physicochemical properties of engineered NPs translates to distinct protein corona patterns enabling differential and reproducible interrogation of biological samples, including deep sampling of the plasma proteome. Spike experiments confirm a linear signal response. The median coefficient of variation was 22%. We screened 43 NPs and selected a panel of 5, which detect more than 2,000 proteins from 141 plasma samples using a 96-well automated workflow in a pilot non-small cell lung cancer classification study. Our streamlined workflow combines depth of coverage and throughput with precise quantification based on unique interactions between proteins and NPs engineered for deep and scalable quantitative proteomic studies.


Assuntos
Proteínas Sanguíneas/análise , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Coroa de Proteína/análise , Proteômica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Sanguíneas/química , Carcinoma Pulmonar de Células não Pequenas/sangue , Cromatografia Líquida de Alta Pressão/métodos , Diagnóstico Diferencial , Feminino , Voluntários Saudáveis , Humanos , Neoplasias Pulmonares/sangue , Masculino , Pessoa de Meia-Idade , Nanopartículas/química , Projetos Piloto , Coroa de Proteína/química , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo
18.
Cell ; 181(5): 1112-1130.e16, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32470399

RESUMO

Acute physical activity leads to several changes in metabolic, cardiovascular, and immune pathways. Although studies have examined selected changes in these pathways, the system-wide molecular response to an acute bout of exercise has not been fully characterized. We performed longitudinal multi-omic profiling of plasma and peripheral blood mononuclear cells including metabolome, lipidome, immunome, proteome, and transcriptome from 36 well-characterized volunteers, before and after a controlled bout of symptom-limited exercise. Time-series analysis revealed thousands of molecular changes and an orchestrated choreography of biological processes involving energy metabolism, oxidative stress, inflammation, tissue repair, and growth factor response, as well as regulatory pathways. Most of these processes were dampened and some were reversed in insulin-resistant participants. Finally, we discovered biological pathways involved in cardiopulmonary exercise response and developed prediction models revealing potential resting blood-based biomarkers of peak oxygen consumption.


Assuntos
Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Masculino , Metaboloma , Pessoa de Meia-Idade , Oxigênio/metabolismo , Consumo de Oxigênio , Proteoma , Transcriptoma
19.
Cancer Res ; 80(6): 1293-1303, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31969375

RESUMO

Small-cell lung cancer (SCLC) is an aggressive form of lung cancer with dismal survival rates. While kinases often play key roles driving tumorigenesis, there are strikingly few kinases known to promote the development of SCLC. Here, we investigated the contribution of the MAPK module MEK5-ERK5 to SCLC growth. MEK5 and ERK5 were required for optimal survival and expansion of SCLC cell lines in vitro and in vivo. Transcriptomics analyses identified a role for the MEK5-ERK5 axis in the metabolism of SCLC cells, including lipid metabolism. In-depth lipidomics analyses showed that loss of MEK5/ERK5 perturbs several lipid metabolism pathways, including the mevalonate pathway that controls cholesterol synthesis. Notably, depletion of MEK5/ERK5 sensitized SCLC cells to pharmacologic inhibition of the mevalonate pathway by statins. These data identify a new MEK5-ERK5-lipid metabolism axis that promotes the growth of SCLC. SIGNIFICANCE: This study is the first to investigate MEK5 and ERK5 in SCLC, linking the activity of these two kinases to the control of cell survival and lipid metabolism.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias Pulmonares/patologia , MAP Quinase Quinase 5/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Colesterol/biossíntese , Técnicas de Silenciamento de Genes , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lipidômica , Neoplasias Pulmonares/tratamento farmacológico , MAP Quinase Quinase 5/genética , Sistema de Sinalização das MAP Quinases/genética , Ácido Mevalônico/metabolismo , Camundongos , Proteína Quinase 7 Ativada por Mitógeno/genética , RNA-Seq , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Rep ; 9(1): 17401, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758014

RESUMO

Vaccination is the most effective method to prevent infectious diseases. However, approaches to identify novel vaccine candidates are commonly laborious and protracted. While surface proteins are suitable vaccine candidates and can elicit antibacterial antibody responses, systematic approaches to define surfomes from gram-negatives have rarely been successful. Here we developed a combined discovery-driven mass spectrometry and computational strategy to identify bacterial vaccine candidates and validate their immunogenicity using a highly prevalent gram-negative pathogen, Helicobacter pylori, as a model organism. We efficiently isolated surface antigens by enzymatic cleavage, with a design of experiment based strategy to experimentally dissect cell surface-exposed from cytosolic proteins. From a total of 1,153 quantified bacterial proteins, we thereby identified 72 surface exposed antigens and further prioritized candidates by computational homology inference within and across species. We next tested candidate-specific immune responses. All candidates were recognized in sera from infected patients, and readily induced antibody responses after vaccination of mice. The candidate jhp_0775 induced specific B and T cell responses and significantly reduced colonization levels in mouse therapeutic vaccination studies. In infected humans, we further show that jhp_0775 is immunogenic and activates IFNγ secretion from peripheral CD4+ and CD8+ T cells. Our strategy provides a generic preclinical screening, selection and validation process for novel vaccine candidates against gram-negative bacteria, which could be employed to other gram-negative pathogens.


Assuntos
Vacinas Bacterianas , Bactérias Gram-Negativas , Espectrometria de Massas , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Antígenos de Superfície/química , Antígenos de Superfície/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Biologia Computacional/métodos , Bactérias Gram-Negativas/imunologia , Proteômica/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...