Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 278(9): 6896-904, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12482845

RESUMO

Murine stress-inducible protein 1 (mSTI1) is a co-chaperone that is homologous with the human Hsp70/Hsp90-organizing protein (Hop). Guided by Hop structural data and sequence alignment analyses, we have used site-directed mutagenesis, co-precipitation assays, circular dichroism spectroscopy, steady-state fluorescence, and surface plasmon resonance spectroscopy to both qualitatively and quantitatively characterize the contacts necessary for the N-terminal tetratricopeptide repeat domain (TPR1) of mSTI1 to bind to heat shock cognate protein 70 (Hsc70) and to discriminate between Hsc70 and Hsp90. We have shown that substitutions in the first TPR motif of Lys(8) or Asn(12) did not affect binding of mSTI1 to Hsc70, whereas double substitution of these residues abrogated binding. A substitution in the second TPR motif of Asn(43) lowered but did not abrogate binding. Similarly, a deletion in the second TPR motif coupled with a substitution of Lys(8) or Asn(12) reduced but did not abrogate binding. These results suggest that mSTI1-Hsc70 interaction requires a network of interactions not only between charged residues in the TPR1 domain of mSTI1 and the EEVD motif of Hsc70 but also outside the TPR domain. We propose that the electrostatic interactions in the first TPR motif made by Lys(8) or Asn(12) define part of the minimum interactions required for successful mSTI1-Hsc70 interaction. Using a truncated derivative of mSTI1 incapable of binding to Hsp90, we substituted residues on TPR1 potentially involved in hydrophobic contacts with Hsc70. The modified protein had reduced binding to Hsc70 but now showed significant binding capacity for Hsp90. In contrast, topologically equivalent substitutions on a truncated derivative of mSTI1 incapable of binding to Hsc70 did not confer Hsc70 specificity on TPR2A. Our results suggest that binding of Hsc70 to TPR1 is more specific than binding of Hsp90 to TPR2A with serious implications for the mechanisms of mSTI1 interactions with Hsc70 and Hsp90 in vivo.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Células 3T3 , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Asparagina/química , Dicroísmo Circular , Fibroblastos/metabolismo , Deleção de Genes , Glutationa/farmacologia , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP90/metabolismo , Cinética , Lisina/química , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Oligonucleotídeos/química , Peptídeos/química , Testes de Precipitina , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Sefarose/farmacologia , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície , Fatores de Tempo
2.
Biochemistry ; 41(48): 14238-47, 2002 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-12450388

RESUMO

Cytosolic glutathione (GSH) transferases (GSTs) exist as stable homo- and heterodimers. Interactions at the subunit interface serve an important role in stabilizing the subunit tertiary structures of all GSH transferases. In addition, the dimer is required to maintain functional conformations at the active site on each subunit and the nonsubstrate ligand binding site at the dimer interface [Dirr, H. W. (2001) Chem.-Biol. Interact. 133, 19-23]. In this study, we report on the contribution of a specific intersubunit hydrophobic motif in rGSTM1-1 to dimer stability and protein function. The motif consists of the side chain of F56 from one subunit intercalated between helices 4 and 5 of the second subunit. Replacement of F56 with the hydrophilic side chains of serine, arginine, and glutamate results in a change in the structure of the active site, a marked diminution in catalytic efficiency, and alterations in the ability to bind nonsubstrate ligands. The mutations also affect the ability of the enzyme to bind GSH and the substrate analogue glutathione sulfonate. The functionality of rGSTM1-1 was disrupted to the greatest extent for the F56E mutant. Though mutations at this position do not alter the three-state equilibrium folding process for rGSTM1-1 (i.e., N(2) <--> 2I <--> 2U), destabilizing mutations at position 56 shift the equilibrium between the folded dimer (N(2)) and the monomeric intermediate (I) toward the latter conformational state. The transition to the unfolded state (U) is not significantly affected. The folded monomeric intermediate is also observed by electrospray ionization mass spectrometry. The amount of the intermediate is dependent on protein concentration and the residue at position 56. Mutations at position 56 have little impact on the secondary structure and stability of the monomeric folding intermediate. The dimerization process is proposed to induce a conformational change in the loop containing F56, resulting in improved stability and increased affinity between the M1 subunits.


Assuntos
Glutationa Transferase/química , Glutationa Transferase/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Motivos de Aminoácidos/genética , Arginina/genética , Cromatografia em Gel , Dimerização , Estabilidade Enzimática/genética , Ácido Glutâmico/genética , Glutationa Transferase/classificação , Glutationa Transferase/genética , Mutagênese Sítio-Dirigida , Nanotecnologia/métodos , Fenilalanina/genética , Desnaturação Proteica , Dobramento de Proteína , Serina/genética , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray/métodos , Relação Estrutura-Atividade , Ureia
3.
Protein Sci ; 11(9): 2208-17, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12192076

RESUMO

Rat micro class glutathione transferases M1-1 and M2-2 are homodimers that share a 78% sequence identity but display differences in stability. M1-1 is more stable at the secondary and tertiary structural levels, whereas its quaternary structure is less stable. Each subunit in these proteins consists of two structurally distinct domains with intersubunit contacts occurring between domain 1 of one subunit and domain 2 of the other subunit. The chimeric subunit variants M(12), which has domain 1 of M1 and domain 2 of M2, and its complement M(21), were used to investigate the conformational stability of the chimeric homodimers M(12)-(12) and M(21)-(21) to determine the contribution of each domain toward stability. Exchanging entire domains between class micro GSTs is accommodated by the GST fold. Urea-induced equilibrium unfolding data indicate that whereas the class micro equilibrium unfolding mechanism (i.e., N(2) <--> 2I <--> 2U) is not altered, domain exchanges impact significantly on the conformational stability of the native dimers and monomeric folding intermediates. Data for the wild-type and chimeric proteins indicate that the order of stability for the native dimer (N(2)) is M2-2 > M(12)-(12) M1-1 approximately M(21)-(21), and that the order of stability of the monomeric intermediate (I) is M1 > M2 approximately M(12) > M(21). Interactions involving Arg 77, which is topologically conserved in GSTs, appear to play an important role in the stability of both the native dimeric and folding monomeric structures.


Assuntos
Glutationa Transferase/química , Isoenzimas/química , Conformação Proteica , Dobramento de Proteína , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Reagentes de Ligações Cruzadas/química , Dimerização , Estabilidade Enzimática , Glutaral/química , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Desnaturação Proteica , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Termodinâmica
4.
Biochem J ; 363(Pt 2): 341-6, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11931663

RESUMO

In addition to their catalytic functions, cytosolic glutathioneS-transferases (GSTs) are a major reserve of high-capacity binding proteins for a large variety of physiological and exogenous non-substrate compounds. This ligandin function has implicated GSTs in numerous ligand-uptake, -transport and -storage processes. The binding of non-substrate ligands to GSTs can inhibit catalysis. In the present study, the energetics of the binding of the non-substrate ligand 8-anilino-1-naphthalene sulphonate (ANS) to wild-type human class Alpha GST with two type-1 subunits (hGSTA1-1) and its DeltaPhe-222 deletion mutant were studied by isothermal titration calorimetry. The stoichiometry of binding to both proteins is one ANS molecule per GST subunit with a greater affinity for the wild-type (K(d)=65 microM) than for the DeltaPhe-222 mutant (K(d)=105 microM). ANS binding to the wild-type protein is enthalpically driven and it is characterized by a large negative heat-capacity change, DeltaC(p). The negative DeltaC(p) value for ANS binding indicates a specific interface with a significant hydrophobic component in the protein-ligand complex. The negatively charged sulphonate group of the anionic ligand is apparently not a major determinant of its binding. Phe-222 contributes to the binding affinity for ANS and the hydrophobicity of the binding site.


Assuntos
Glutationa Transferase/química , Glutationa Transferase/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Naftalenossulfonato de Anilina , Ânions , Sítios de Ligação , Calorimetria , Metabolismo Energético , Glutationa Transferase/genética , Humanos , Técnicas In Vitro , Isoenzimas/genética , Ligantes , Fenilalanina/química , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA