Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(7): 3659-3681, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37278223

RESUMO

A 17-mer RNA hairpin (5'GGGAGUXAGCGGCUCCC3') carrying 3-N-methyluridine (m3U) at position X (m3U7-RNA), designed to represent the anticodon stem-loop (ACSL) region of tRNAs to study an open loop state (O-state), was synthesized, purified by HPLC, and characterized by MALDI-ToF_MS and NMR methods. 1H-NMR data revealed primary (P-state in 56.1%), secondary (S-state in 43.9%) and tertiary (∼5-6%) ACSL conformations. Exchange rate constant (kex) for interconversion between P and S states is 112 sec-1 (<Δω ∼454 rad/sec), confirming a slow exchange regime between the two states. Forward (kPS) and backward (kSP) rate constants are 49.166 sec-1 and 62.792 sec-1, respectively, leading to a longer life-time (20.339 msec) for the P-state and a shorter life-time (15.926 msec) for the S-state. In accordance with conformational populations determined by 1H-NMR, dynamics of the P/S/tertiary states of m3U7-RNA and its wild-type counterpart (wt-RNA) were studied by three independent MD production simulations. Cluster analysis revealed that wt-RNA reflects the structural characteristics of the ACSL region of tRNAs. The P-state of m3U7-RNA was found to be structurally similar to wt-RNA but lacks an intraloop H-bond between m3U7 and C10 (U33 and nt36 in tRNAs). In the S-state of m3U7-RNA, m3U7 flips out of the loop region. O-state loop conformations of m3U7-RNA were also clustered (4.8%), wherein the loop nucleotides m3U7.A8.G9.C10.G11 stack one after another. We propose that the O-state of m3U7-RNA is the most suitable conformation that makes the loop accessible for complementary nucleotides and for non-enzymatic primordial replication of small circular RNAs.Communicated by Ramaswamy H. Sarma.


Assuntos
Nucleotídeos , RNA , RNA/genética , Espectroscopia de Ressonância Magnética , RNA de Transferência , Anticódon , Conformação de Ácido Nucleico
2.
Int J Biol Macromol ; 48(4): 531-9, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21335028

RESUMO

The parmbsc0 force field was applied to study in detail the binding of netropsin, at a salt concentration of 0.28M Na(+), to the minor groove of an 8-mer (5'CCAATTGG)(2) DNA duplex forming a netropsin·DNA complex which previously has been characterized by X-ray crystallography, albeit with the use of closely related DNA duplexes. The X-ray structure revealed that the terminal guanidinium and amidinium groups of netropsin interact with the extreme ends of the palindromic AATT sequence of the receptor DNA. The parmbsc0 parameters of B-DNA and AMBER v9 parameters of netropsin generated a stable 6ns molecular dynamics (MD) trajectory for a 1:1 class I binding motif of this complex. Trajectory analysis for the salt and hydration effects on the binding of netropsin to the 8-mer DNA duplex revealed that 18 water molecules and 2 Na(+) are displaced from the DNA upon netropsin binding. A hydration density map of the complex parallels the X-ray data showing that two structured water molecules are localized near the netropsin guanidinium and amidinium groups forming H-bond bridges between the receptor and the ligand.


Assuntos
DNA/metabolismo , Modelos Moleculares , Netropsina/metabolismo , Ligação Proteica , Cristalografia por Raios X , DNA/genética , Simulação de Dinâmica Molecular , Estrutura Molecular , Cloreto de Sódio/química , Água/química
3.
Bioorg Chem ; 39(1): 28-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21115188

RESUMO

The dependence of the solution structure of neamine on pH was determined by NMR and AMBER molecular dynamics methods at pD 3.3, pD 6.5, and pD 7.4 in D(2)O at 25°C. Unlike neamine structures at pD 3.3 and 6.5, which essentially showed only one conformer, slowly exchanging primary, P-state, and secondary, S-state, neamine conformers populated on the NMR time scale at ~80% and ~20%, respectively, were detected at pD 7.4 with kinetic constants k(on(P→S))=1.9771s(-1) and k(off(S→P))=1.1319s(-1). A tertiary, T-state, neamine species populated at ~3% was also detected by NMR at pD 7.4. The pKa values determined by NMR titration experiments are pKa1 6.44±0.13 for N3 of ring-II, pKa2 7.23±0.09 for N2' of ring-I, pKa3 7.77±0.19 for N1 of ring-II, and pKa4 8.08±0.15 for N6' of ring-I. Ring-I and ring-II of the P-state neamine and ring-I of the S and T-states of neamine possess the (4)C(1) chair conformation between pD 3.3 and pD=7.4. In contrast, ring-II of the S and T-states of neamine most likely adopt the (6)rH(1) half-chair conformation. The P and S-states of neamine exhibit a negative syn-ψ glycosidic geometry. The exocyclic aminomethyl group of ring-I adopts the gt exocyclic rotamer conformation around physiological pHs while the gg exocyclic rotamer conformation predominates in acidic solutions near and below pH 4.5. Neamine exists in the P-state as a mixture of tetra-/tri-/di-protonated species between pD 4.5 and pD 7.4, while the S-state neamine exist only in a di-protonated species around physiological pDs. The existence of the S-state neamine may facilitate binding of neamine-like aminoglycosides by favorable entropy of binding to the A-site of 16S ribosomal RNA, suggesting that novel aminoglycoside compounds carrying a S-state neamine pharmacophore can be developed.


Assuntos
Antibacterianos/química , Framicetina/química , Espectroscopia de Ressonância Magnética , Desenho de Fármacos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA