Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(24): 5131-5138, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37937401

RESUMO

We describe a system for interrogating the acoustic properties of sub-nanoliter liquid samples within an open microfluidics platform. Sessile droplets were deposited onto integrated optomechanical sensors, which possess ambient-medium-noise-limited sensitivity and can thus passively sense the thermally driven acoustic spectrum of the droplets. The droplet acoustic breathing modes manifest as resonant features in the thermomechanical noise spectrum of the sensor, in some cases hybridized with the sensor's own vibrational modes. Excellent agreement is found between experimental observations and theoretical predictions, over the entire ∼0-40 MHz operating range of our sensors. As an application example, we used the technique to monitor the temporal evolution of evaporating droplets. With suitable control over droplet size and morphology, this technique has the potential for precision acoustic sensing of small-volume biological and chemical samples.

2.
Appl Opt ; 62(18): 4866-4870, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37707262

RESUMO

In this observational study, we embed few-layer hexagonal boron nitride (hBN) inside a planar Fabry-Perot cavity fabricated using a pulsed DC magnetron sputtering system and show that the hBN retains its inherent visible range, defect-based luminescent properties following relatively energetic deposition processing. The observed surface-normal emission enhancement factor of ∼40 is in good agreement with theoretical predictions. We also found that embedded hBN subjected to a rapid thermal annealing treatment exhibits a cracking effect where the edges of the material glow distinctly brighter than adjacent regions. Our results might inform future efforts involving monolithic integration of hBN active layers.

3.
Opt Express ; 30(18): 33083-33096, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242356

RESUMO

We describe the use of monolithic, buckled-dome cavities as ultrasound sensors. Patterned delamination within a compressively stressed thin film stack produces high-finesse plano-concave optical resonators with sealed and empty cavity regions. The buckled mirror also functions as a flexible membrane, highly responsive to changes in external pressure. Owing to their efficient opto-acousto-mechanical coupling, thermal-displacement-noise limited sensitivity is achieved at low optical interrogation powers and for modest optical (Q ∼ 103) and mechanical (Q ∼ 102) quality factors. We predict and verify broadband (up to ∼ 5 MHz), air-coupled ultrasound detection with noise-equivalent pressure (NEP) as low as ∼ 30-100 µPa/Hz1/2. This corresponds to an ultrasonic force sensitivity ∼ 2 × 10-13 N/Hz1/2 and enables the detection of MHz-range signals propagated over distances as large as ∼ 20 cm in air. In water, thermal-noise-limited sensitivity is demonstrated over a wide frequency range (up to ∼ 30 MHz), with NEP as low as ∼ 100-800 µPa/Hz1/2. These cavities exhibit a nearly omnidirectional response, while being ∼ 3-4 orders of magnitude more sensitive than piezoelectric devices of similar size. Easily realized as large arrays and naturally suited to direct coupling by free-space beams or optical fibers, they offer significant practical advantages over competing optical devices, and thus could be of interest for several emerging applications in medical and industrial ultrasound imaging.

4.
Opt Express ; 29(16): 26103-26115, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614923

RESUMO

We present a hexagonal boron nitride (hBN) polymer-assisted transfer technique and discuss subtleties about the process. We then demonstrate localized emission from strained regions of the film draped over features on a prepatterned substrate. Notably, we provide insight into the brightness distribution of these emitters and show that the brightest emission is clearly localized to the underlyin-g substrate features rather than unintentional wrinkles present in the hBN film. Our results aide in the current discussion surrounding scalability of single photon emitter arrays.

5.
Appl Opt ; 60(29): 9219-9224, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34624005

RESUMO

We describe the use of on-chip buckled-dome Fabry-Perot microcavities as pressure sensing elements. These cavities, fabricated by a controlled thin-film buckling process, are inherently sealed and support stable optical modes (finesse >103), which are well-suited to coupling by single-mode fibers. Changes in external pressure deflect the buckled upper mirror, leading to changes in resonance wavelengths. Experimental shifts are shown to be in good agreement with theoretical predictions. Sensitivities as large as ∼1nm/kPa, attributable to the low thickness (<2µm) of the buckled mirror, and resolution ∼10Pa are demonstrated. We discuss potential advantages over traditional low-finesse, quasi-planar Fabry-Perot pressure sensors.

6.
Opt Express ; 28(19): 28113-28125, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988089

RESUMO

We describe curved-mirror Fabry-Perot cavities with embedded silicon nitride membranes, fabricated using a monolithic surface-micromachining process. The presence of the suspended membranes was confirmed by confocal microscopy, and their properties were verified through optical studies and thermomechanical calibration of mechanical/vibrational noise spectra measured at room temperature and atmospheric pressure. The cavities exhibit reflectance-limited finesse (F ∼ 103) and wavelength-scale mode volumes (VM ∼ 10·λ3). The short cavity length (L ∼ 2·λ) results in large optomechanical coupling, which is desirable for numerous applications in sensing and quantum information.

7.
Appl Opt ; 59(23): 7125-7130, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788809

RESUMO

We describe a monolithic approach to fabricating large-scale arrays of high-finesse and low-mode-volume Fabry-Perot microcavities with open access to the air core. A stress-driven buckling self-assembly technique was used to form half-symmetric curved-mirror cavities, and a dry etching process was subsequently used to create micropores through the upper mirror. We show that the cavities retain excellent optical properties, with reflectance-limited finesse ∼2500 and highly predictable Laguerre-Gaussian modes. We furthermore demonstrate the ability to introduce liquids into the cavity region by microinjection through the pores. Applications in sensing, optofluidics, and cavity quantum electrodynamics are envisioned.

8.
Opt Express ; 27(16): 23633-23644, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510637

RESUMO

We describe a tunable bandpass filter and polarizer based on resonant tunneling through an air gap between two hemi-cylindrical prisms coated with 4-layer a-Si/SiO2 matching stacks. Tuning is achieved by simultaneous variations in the incident angle and the air gap thickness, enabling the pass-band center wavelength to be continuously adjusted over a very wide range (potentially ~1000 - 1800 nm) with an approximately fixed fractional bandwidth (Δλ/λ ~1%). An analytical derivation of the conditions required to produce a flat-top TE pass-band at a desired wavelength is given. The filter provides excellent out-of-band rejection and strong suppression of the orthogonal TM polarization over the entire tuning range. For applications involving collimated light, it could be a useful alternative to existing widely tunable filters based on gratings or liquid crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA