Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Gastroenterol Hepatol ; 20(7): 417-432, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37186118

RESUMO

Epithelial tight junctions define the paracellular permeability of the intestinal barrier. Molecules can cross the tight junctions via two distinct size-selective and charge-selective paracellular pathways: the pore pathway and the leak pathway. These can be distinguished by their selectivities and differential regulation by immune cells. However, permeability increases measured in most studies are secondary to epithelial damage, which allows non-selective flux via the unrestricted pathway. Restoration of increased unrestricted pathway permeability requires mucosal healing. By contrast, tight junction barrier loss can be reversed by targeted interventions. Specific approaches are needed to restore pore pathway or leak pathway permeability increases. Recent studies have used preclinical disease models to demonstrate the potential of pore pathway or leak pathway barrier restoration in disease. In this Review, we focus on the two paracellular flux pathways that are dependent on the tight junction. We discuss the latest evidence that highlights tight junction components, structures and regulatory mechanisms, their impact on gut health and disease, and opportunities for therapeutic intervention.


Assuntos
Mucosa , Junções Íntimas , Humanos , Junções Íntimas/química , Junções Íntimas/metabolismo , Permeabilidade , Mucosa Intestinal/metabolismo
2.
Acta Neuropathol Commun ; 9(1): 104, 2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092257

RESUMO

The prevalence of congenital hydrocephalus has been estimated at 1.1 per 1000 infants when including cases diagnosed before 1 year of age after exclusion of neural tube defects. Classification criteria are based either on CSF dynamics, pathophysiological mechanisms or associated lesions. Whereas inherited syndromic hydrocephalus has been associated with more than 100 disease-causing genes, only four genes are currently known to be linked to congenital hydrocephalus either isolated or as a major clinical feature: L1CAM, AP1S2, MPDZ and CCDC88C. In the past 10 years, pathogenic variants in CCDC88C have been documented but the neuropathology remains virtually unknown. We report the neuropathology of two foetuses from one family harbouring two novel compound heterozygous pathogenic variants in the CCDC88C gene: a maternally inherited indel in exon 22, c.3807_3809delinsACCT;p.(Gly1270Profs*53) and a paternally inherited deletion of exon 23, c.3967-?_c.4112-?;p.(Leu1323Argfs*10). Medical termination of pregnancy was performed at 18 and 23 weeks of gestation for severe bilateral ventriculomegaly. In both fetuses, brain lesions consisted of multifocal atresia-forking along the aqueduct of Sylvius and the central canal of the medulla, periventricular neuronal heterotopias and choroid plexus hydrops. The second fetus also presented lumbar myelomeningocele, left diaphragmatic hernia and bilateral renal agenesis. CCDC88C encodes the protein DAPLE which contributes to ependymal cell planar polarity by inhibiting the non-canonical Wnt signaling pathway and interacts with MPDZ and PARD3. Interestingly, heterozygous variants in PARD3 result in neural tube defects by defective tight junction formation and polarization process of the neuroepithelium. Besides, during organ formation Wnt signalling is a prerequisite for planar cell polarity pathway activation, and mutations in planar cell polarity genes lead to heart, lung and kidney malformations. Hence, candidate variants in CCDC88C should be carefully considered whether brain lesions are isolated or associated with malformations suspected to result from disorders of planar cell polarity.


Assuntos
Doenças Fetais/genética , Hidrocefalia/congênito , Hidrocefalia/genética , Hidrocefalia/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas dos Microfilamentos/genética , Adulto , Encéfalo/patologia , Feminino , Feto , Humanos , Mutação , Linhagem , Gravidez
4.
Sci Rep ; 9(1): 14238, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578372

RESUMO

The impermeability of the luminal endothelial cell monolayer is crucial for the normal performance of the vascular and lymphatic systems. A key to this function is the integrity of the monolayer's intercellular junctions. The known repertoire of junction-regulating genes is incomplete. Current permeability assays are incompatible with high-throughput genome-wide screens that could identify these genes. To overcome these limitations, we designed a new permeability assay that consists of cell monolayers grown on ~150 µm microcarriers (MCs). Each MC functions as a miniature individual assay of permeability (MAP). We demonstrate that false-positive results can be minimized, and that MAP sensitivity to thrombin-induced increase in monolayer permeability is similar to the sensitivity of impedance measurement. We validated the assay by showing that the expression of single guide RNAs (sgRNAs) that target genes encoding known thrombin signaling proteins blocks effectively thrombin-induced junction disassembly, and that MAPs carrying such cells can be separated effectively by fluorescence-assisted sorting from those that carry cells expressing non-targeting sgRNAs. These results indicate that MAPs are suitable for high-throughput experimentation and for genome-wide screens for genes that mediate the disruptive effect of thrombin on endothelial cell junctions.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células Endoteliais/citologia , Estudo de Associação Genômica Ampla/métodos , Ensaios de Triagem em Larga Escala/métodos , RNA Guia de Cinetoplastídeos/genética , Junções Aderentes/fisiologia , Linhagem Celular Transformada , Células Clonais/metabolismo , Colágeno/metabolismo , Células Endoteliais/metabolismo , Fibronectinas/metabolismo , Citometria de Fluxo/métodos , Corantes Fluorescentes/análise , Gelatina , Biblioteca Gênica , Estudo de Associação Genômica Ampla/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Masculino , Miniaturização , Permeabilidade/efeitos dos fármacos , Interferência de RNA , Proteínas Repressoras/genética , Transdução de Sinais/genética , Trombina/metabolismo , Trombina/farmacologia , Junções Íntimas/fisiologia , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/farmacologia
5.
Science ; 366(6464): 435, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31649193
6.
EMBO Rep ; 20(8): e48313, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31267630

RESUMO

Comment on "Close loop peer review" by Michael Hill.


Assuntos
Revisão por Pares
7.
Small GTPases ; 10(1): 26-32, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-28125332

RESUMO

In this commentary we discuss a paper we published recently on the activities of the GTPase RhoA during neural differentiation of murine embryonic stem cells, and relate our findings to previous studies. We narrate how we found that RhoA impedes neural differentiation by inhibiting the production as well as the secretion of noggin, a soluble factor that antagonizes bone morphogenetic protein. We discuss how the questions we tried to address shaped the study, and how embryonic stem cells isolated from a genetically modified mouse model devoid of Syx, a RhoA-specific guanine exchange factor, were used to address them. We detail several signaling pathways downstream of RhoA that are hindered by the absence of Syx, and obstructed by retinoic acid, resulting in an increase of noggin production; we explain how the lower RhoA activity and, consequently, the sparser peri-junctional stress fibers in Syx-/- cells facilitated noggin secretion; and we report unpublished results showing that pharmacological inhibition of RhoA accelerates the neuronal differentiation of human embryonic stem cells. Finally, we identify signaling mechanisms in our recent study that warrant further study, and speculate on the possibility of manipulating RhoA signaling in combination with other pathways to drive the differentiation of neuronal subtypes.


Assuntos
Células-Tronco Embrionárias/citologia , Neurogênese , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Proteínas de Transporte/fisiologia , Células-Tronco Embrionárias/fisiologia , Humanos , Proteína Smad1/fisiologia , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
8.
EMBO Mol Med ; 11(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30518636

RESUMO

Though congenital hydrocephalus is heritable, it has been linked only to eight genes, one of which is MPDZ Humans and mice that carry a truncated version of MPDZ incur severe hydrocephalus resulting in acute morbidity and lethality. We show by magnetic resonance imaging that contrast medium penetrates into the brain ventricles of mice carrying a Mpdz loss-of-function mutation, whereas none is detected in the ventricles of normal mice, implying that the permeability of the choroid plexus epithelial cell monolayer is abnormally high. Comparative proteomic analysis of the cerebrospinal fluid of normal and hydrocephalic mice revealed up to a 53-fold increase in protein concentration, suggesting that transcytosis through the choroid plexus epithelial cells of Mpdz KO mice is substantially higher than in normal mice. These conclusions are supported by ultrastructural evidence, and by immunohistochemistry and cytology data. Our results provide a straightforward and concise explanation for the pathophysiology of Mpdz-linked hydrocephalus.


Assuntos
Permeabilidade Capilar , Proteínas de Transporte/genética , Plexo Corióideo/patologia , Plexo Corióideo/fisiopatologia , Hidrocefalia/patologia , Hidrocefalia/fisiopatologia , Animais , Meios de Contraste/análise , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Imageamento por Ressonância Magnética , Proteínas de Membrana , Camundongos
9.
Nat Commun ; 8(1): 678, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084947

RESUMO

Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease.


Assuntos
Autofagia/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Doença dos Neurônios Motores/genética , Vesículas Sinápticas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Doença dos Neurônios Motores/metabolismo , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
10.
J Vis Exp ; (122)2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28518115

RESUMO

Mouse embryonic stem cells (ESCs) isolated from the inner mass of the blastocyst (typically at day E3.5), can be used as in vitro model system for studying early embryonic development. In the absence of leukemia inhibitory factor (LIF), ESCs differentiate by default into neural precursor cells. They can be amassed into a three dimensional (3D) spherical aggregate termed embryoid body (EB) due to its similarity to the early stage embryo. EBs can be seeded on fibronectin-coated coverslips, where they expand by growing two dimensional (2D) extensions, or implanted in 3D collagen matrices where they continue growing as spheroids, and differentiate into the three germ layers: endodermal, mesodermal, and ectodermal. The 3D collagen culture mimics the in vivo environment more closely than the 2D EBs. The 2D EB culture facilitates analysis by immunofluorescence and immunoblotting to track differentiation. We have developed a two-step neural differentiation protocol. In the first step, EBs are generated by the hanging-drop technique, and, simultaneously, are induced to differentiate by exposure to retinoic acid (RA). In the second step, neural differentiation proceeds in a 2D or 3D format in the absence of RA.


Assuntos
Corpos Embrioides/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Técnicas de Cultura de Células , Colágeno , Ectoderma , Endoderma , Mesoderma , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Neurais/citologia
12.
Sci Signal ; 9(438): ra76, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27460990

RESUMO

Spontaneous neural differentiation of embryonic stem cells is induced by Noggin-mediated inhibition of bone morphogenetic protein 4 (BMP4) signaling. RhoA is a guanosine triphosphatase (GTPase) that regulates cytoskeletal dynamics and gene expression, both of which control stem cell fate. We found that disruption of Syx, a gene encoding a RhoA-specific guanine nucleotide exchange factor, accelerated retinoic acid-induced neural differentiation in murine embryonic stem cells aggregated into embryoid bodies. Cells from Syx(+/+) and Syx(-/-) embryoid bodies had different abundances of proteins implicated in stem cell pluripotency. The differentiation-promoting proteins Noggin and RARγ (a retinoic acid receptor) were more abundant in cells of Syx(-/-) embryoid bodies, whereas the differentiation-suppressing proteins SIRT1 (a protein deacetylase) and the phosphorylated form of SMAD1 (the active form of this transcription factor) were more abundant in cells of Syx(+/+) embryoid bodies. These differences were blocked by the overexpression of constitutively active RhoA, indicating that the abundance of these proteins was maintained, at least in part, by RhoA activity. The peripheral stress fibers in cells from Syx(-/-) embryoid bodies were thinner than those in Syx(+/+) cells. Furthermore, less Noggin and fewer vesicles containing Rab3d, a GTPase that mediates Noggin trafficking, were detected in cells from Syx(-/-) embryoid bodies, which could result from increased Noggin exocytosis. These results suggested that, in addition to inhibiting Noggin transcription, RhoA activity in wild-type murine embryonic stem cells also prevented neural differentiation by limiting Noggin secretion.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Neurônios/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Neurônios/citologia , Transcrição Gênica/fisiologia , Proteínas rab3 de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP
13.
FEBS Lett ; 587(21): 3392-9, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24021649

RESUMO

Though the vascular endothelial growth factor coreceptor neuropilin-1 (Nrp1) plays a critical role in vascular development, its precise function is not fully understood. We identified a group of novel binding partners of the cytoplasmic domain of Nrp1 that includes the focal adhesion regulator, Filamin A (FlnA). Endothelial cells (ECs) expressing a Nrp1 mutant devoid of the cytoplasmic domain (nrp1(cyto)(Δ/Δ)) migrated significantly slower in response to VEGF relative to the cells expressing wild-type Nrp1 (nrp1(+/+) cells). The rate of FA turnover in VEGF-treated nrp1(cyto)(Δ/Δ) ECs was an order of magnitude lower in comparison to nrp1(+/+) ECs, thus accounting for the slower migration rate of the nrp1(cyto)(Δ/Δ) ECs.


Assuntos
Adesões Focais/metabolismo , Neuropilina-1/química , Neuropilina-1/metabolismo , Animais , Adesão Celular , Citoplasma/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Filaminas/química , Filaminas/metabolismo , Camundongos , Mutação , Neuropilina-1/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
J Cell Biol ; 199(7): 1103-15, 2012 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-23253477

RESUMO

Vascular endothelial growth factor (VEGF) and Ang1 (Angiopoietin-1) have opposing effects on vascular permeability, but the molecular basis of these effects is not fully known. We report in this paper that VEGF and Ang1 regulate endothelial cell (EC) junctions by determining the localization of the RhoA-specific guanine nucleotide exchange factor Syx. Syx was recruited to junctions by members of the Crumbs polarity complex and promoted junction integrity by activating Diaphanous. VEGF caused translocation of Syx from cell junctions, promoting junction disassembly, whereas Ang1 maintained Syx at the junctions, inducing junction stabilization. The VEGF-induced translocation of Syx from EC junctions was caused by PKD1 (protein kinase D1)-mediated phosphorylation of Syx at Ser(806), which reduced Syx association to its junctional anchors. In support of the pivotal role of Syx in regulating EC junctions, syx(-/-) mice had defective junctions, resulting in vascular leakiness, edema, and impaired heart function.


Assuntos
Angiopoietina-1/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Junções Intercelulares/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Permeabilidade Capilar , Proteínas de Transporte/metabolismo , Cães , Forminas , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células Madin Darby de Rim Canino , Proteínas de Membrana , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Transporte Proteico , Interferência de RNA , Transdução de Sinais , Volume Sistólico , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia
15.
Nat Cell Biol ; 14(10): 1046-56, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23000962

RESUMO

Angiogenesis, the formation of new blood vessels, is fundamental to development and post-injury tissue repair. Vascular endothelial growth factor (VEGF)-A guides and enhances endothelial cell migration to initiate angiogenesis. Profilin-1 (Pfn-1) is an actin-binding protein that enhances actin filament formation and cell migration, but stimulus-dependent regulation of Pfn-1 has not been observed. Here, we show that VEGF-A-inducible phosphorylation of Pfn-1 at Tyr 129 is critical for endothelial cell migration and angiogenesis. Chemotactic activation of VEGF receptor kinase-2 (VEGFR2) and Src induces Pfn-1 phosphorylation in the cell leading edge, promoting Pfn-1 binding to actin and actin polymerization. Conditional endothelial knock-in of phosphorylation-deficient Pfn1(Y129F) in mice reveals that Pfn-1 phosphorylation is critical for angiogenesis in response to wounding and ischaemic injury, but not for developmental angiogenesis. Thus, VEGFR2/Src-mediated phosphorylation of Pfn-1 bypasses canonical, multistep intracellular signalling events to initiate endothelial cell migration and angiogenesis, and might serve as a selective therapeutic target for anti-angiogenic therapy.


Assuntos
Profilinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Movimento Celular/fisiologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Técnicas de Introdução de Genes , Isquemia/metabolismo , Masculino , Camundongos , Microvasos/citologia , Microvasos/metabolismo , Neovascularização Fisiológica , Fosforilação , Profilinas/genética , Transdução de Sinais/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ferimentos e Lesões/metabolismo , Quinases da Família src/metabolismo
16.
Cell Signal ; 24(9): 1810-20, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22617029

RESUMO

Recent findings have drawn attention to the role of membrane traffic in the signaling of vascular endothelial growth factor (VEGF). The significance of this development stems from the pivotal function of VEGF in vasculogenesis and angiogenesis. The outline of the regulation of VEGF receptor (VEGFR) signaling by membrane traffic is similar to that of the epidermal growth factor receptor (EGFR), a prototype of the intertwining between membrane traffic and signaling. There are, however, unique features in VEGFR signaling that are conferred in part by the involvement of the co-receptor neuropilin (Nrp). Nrp1 and VEGFR2 are integrated into membrane traffic through the adaptor protein synectin, which recruits myosin VI, a molecular motor that drives inward trafficking [17,21,64]. The recent detection of only mild vascular defects in a knockin mouse model that expresses Nrp1 lacking a cytoplasmic domain [104], questions the co-receptor's role in VEGF signaling and membrane traffic. The regulation of endocytosis by ephrin-B2 is another feature unique to VEGR2/3 [18,19], but it awaits a mechanistic explanation. Current models do not fully explain how membrane traffic bridges between VEGFR and the downstream effectors that produce its functional outcome, such as cell migration. VEGF-A appears to accomplish this task in part by recruiting endocytic vesicles carrying RhoA to internalized active VEGFR2 [58].


Assuntos
Membrana Celular/metabolismo , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Endocitose , Receptores ErbB/metabolismo , Humanos , Modelos Biológicos
17.
J Biol Chem ; 286(26): 23511-20, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21543326

RESUMO

Angiogenesis requires concomitant remodeling of cell junctions and migration, as exemplified by recent observations of extensive endothelial cell movement along growing blood vessels. We report that a protein complex that regulates cell junctions is required for VEGF-driven directional migration and for angiogenesis in vivo. The complex consists of RhoA and Syx, a RhoA guanine exchange factor cross-linked by the Crumbs polarity protein Mupp1 to angiomotin, a phosphatidylinositol-binding protein. The Syx-associated complex translocates to the leading edge of migrating cells by membrane trafficking that requires the tight junction recycling GTPase Rab13. In turn, Rab13 associates with Grb2, targeting Syx and RhoA to Tyr(1175)-phosphorylated VEGFR2 at the leading edge. Rab13 knockdown in zebrafish impeded sprouting of intersegmental vessels and diminished the directionality of their tip cells. These results indicate that endothelial cell mobility in sprouting vessels is facilitated by shuttling the same protein complex from disassembling junctions to the leading edges of cells.


Assuntos
Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Endoteliais/citologia , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Fosforilação/fisiologia , Junções Íntimas/genética , Junções Íntimas/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP
18.
Commun Integr Biol ; 4(6): 703-5, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22446532

RESUMO

The change in the overall shape of developing organs is a consequence of the cumulative movement, reshaping, and proliferation of the individual mural cells that make up the walls of these organs. Recent observations suggest that the shape and the position of endothelial cells (ECs) in growing blood vessels are highly dynamic, implying that these cells remodel their junctions extensively and do not preserve their initial relative positions. In order to determine the mechanisms that confer the dynamic behavior of mural ECs, we tracked the trafficking of a cell junction protein complex that consists of the RhoA-specific guanine exchange factor (GEF) Syx, the scaffold protein Mupp1, and the phospholipid binding protein Amot.1 We found that RhoA co-trafficked with this complex on the same endocytic vesicles, and that its cellular activity pattern was determined by Rab13-dependent trafficking. The vesicles were targeted by a Rab13-associated protein complex to Tyr(1175)-phosphorylated VEGFR2 at the leading edge of ECs migrating under a VEGF gradient. These results indicate that the dynamic behavior of ECs in sprouting vessels is conferred by using the same protein complex for the regulation of both cell junctions and cell motility. Together with previous studies that demonstrated regulation of Rac signaling by Rab5-dependent trafficking,(2) it appears now that membrane traffic is tightly coupled to the regulation of Rho GTPases, and, consequently, to the regulation of the actin cytoskeleton, cell junctions, and cell migration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA