Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(4): 042501, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939025

RESUMO

We report a precise measurement of the parity-violating (PV) asymmetry A_{PV} in the elastic scattering of longitudinally polarized electrons from ^{48}Ca. We measure A_{PV}=2668±106(stat)±40(syst) parts per billion, leading to an extraction of the neutral weak form factor F_{W}(q=0.8733 fm^{-1})=0.1304±0.0052(stat)±0.0020(syst) and the charge minus the weak form factor F_{ch}-F_{W}=0.0277±0.0055. The resulting neutron skin thickness R_{n}-R_{p}=0.121±0.026(exp)±0.024(model) fm is relatively thin yet consistent with many model calculations. The combined CREX and PREX results will have implications for future energy density functional calculations and on the density dependence of the symmetry energy of nuclear matter.

2.
Phys Rev Lett ; 128(14): 142501, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35476486

RESUMO

We report precision determinations of the beam-normal single spin asymmetries (A_{n}) in the elastic scattering of 0.95 and 2.18 GeV electrons off ^{12}C, ^{40}Ca, ^{48}Ca, and ^{208}Pb at very forward angles where the most detailed theoretical calculations have been performed. The first measurements of A_{n} for ^{40}Ca and ^{48}Ca are found to be similar to that of ^{12}C, consistent with expectations and thus demonstrating the validity of theoretical calculations for nuclei with Z≤20. We also report A_{n} for ^{208}Pb at two new momentum transfers (Q^{2}) extending the previous measurement. Our new data confirm the surprising result previously reported, with all three data points showing significant disagreement with the results from the Z≤20 nuclei. These data confirm our basic understanding of the underlying dynamics that govern A_{n} for nuclei containing ≲50 nucleons, but point to the need for further investigation to understand the unusual A_{n} behavior discovered for scattering off ^{208}Pb.

3.
Phys Rev Lett ; 126(17): 172502, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988387

RESUMO

We report a precision measurement of the parity-violating asymmetry A_{PV} in the elastic scattering of longitudinally polarized electrons from ^{208}Pb. We measure A_{PV}=550±16(stat)±8(syst) parts per billion, leading to an extraction of the neutral weak form factor F_{W}(Q^{2}=0.00616 GeV^{2})=0.368±0.013. Combined with our previous measurement, the extracted neutron skin thickness is R_{n}-R_{p}=0.283±0.071 fm. The result also yields the first significant direct measurement of the interior weak density of ^{208}Pb: ρ_{W}^{0}=-0.0796±0.0036(exp)±0.0013(theo) fm^{-3} leading to the interior baryon density ρ_{b}^{0}=0.1480±0.0036(exp)±0.0013(theo) fm^{-3}. The measurement accurately constrains the density dependence of the symmetry energy of nuclear matter near saturation density, with implications for the size and composition of neutron stars.

4.
Phys Rev Lett ; 126(17): 172503, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988426

RESUMO

Laboratory experiments sensitive to the equation of state of neutron rich matter in the vicinity of nuclear saturation density provide the first rung in a "density ladder" that connects terrestrial experiments to astronomical observations. In this context, the neutron skin thickness of ^{208}Pb (R_{skin}^{208}) provides a stringent laboratory constraint on the density dependence of the symmetry energy. In turn, an improved value of R_{skin}^{208} has been reported recently by the PREX collaboration. Exploiting the strong correlation between R_{skin}^{208} and the slope of the symmetry energy L within a specific class of relativistic energy density functionals, we report a value of L=(106±37) MeV-which systematically overestimates current limits based on both theoretical approaches and experimental measurements. The impact of such a stiff symmetry energy on some critical neutron-star observables is also examined.

5.
Phys Rev Lett ; 126(13): 131101, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861115

RESUMO

The first solids that form as a cooling white dwarf (WD) starts to crystallize are expected to be greatly enriched in actinides. This is because the melting points of WD matter scale as Z^{5/3} and actinides have the largest charge Z. We estimate that the solids may be so enriched in actinides that they could support a fission chain reaction. This reaction could ignite carbon burning and lead to the explosion of an isolated WD in a thermonuclear supernova (SN Ia). Our mechanism could potentially explain SN Ia with sub-Chandrasekhar ejecta masses and short delay times.

6.
Phys Rev Lett ; 124(5): 051102, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083937

RESUMO

Dark matter could be composed of compact dark objects (CDOs). These objects may interact very weakly with normal matter and could move freely inside the Earth. A CDO moving in the inner core of the Earth will have an orbital period near 55 min and produce a time-dependent signal in a gravimeter. Data from superconducting gravimeters rule out such objects moving inside the Earth unless their mass m_{D} and or orbital radius a are very small so that m_{D}a<1.2×10^{-13}M_{⊕}R_{⊕}. Here, M_{⊕} and R_{⊕} are the mass and radius of the Earth, respectively.

7.
Phys Rev Lett ; 122(7): 071102, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848652

RESUMO

Dark matter could be composed of compact dark objects (CDOs). We find that the oscillation of CDOs inside neutron stars can be a detectable source of gravitational waves (GWs). The GW strain amplitude depends on the mass of the CDO, and its frequency is typically in the range 3-5 kHz as determined by the central density of the star. In the best cases, LIGO may be sensitive to CDO masses greater than or of order 10^{-8} M_{⊙}.

8.
Phys Rev Lett ; 121(13): 132701, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312063

RESUMO

The elastic properties of neutron star crusts are relevant for a variety of currently observable or near-future electromagnetic and gravitational wave phenomena. These phenomena may depend on the elastic properties of nuclear pasta found in the inner crust. We present large-scale classical molecular dynamics simulations where we deform nuclear pasta. We simulate idealized samples of nuclear pasta and describe their breaking mechanism. We also deform nuclear pasta that is arranged into many domains, similar to what is known for the ions in neutron star crusts. Our results show that nuclear pasta may be the strongest known material, perhaps with a shear modulus of 10^{30} ergs/cm^{3} and a breaking strain greater than 0.1.

9.
Phys Rev Lett ; 120(17): 172702, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29756822

RESUMO

The historical first detection of a binary neutron star merger by the LIGO-Virgo Collaboration [B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.161101] is providing fundamental new insights into the astrophysical site for the r process and on the nature of dense matter. A set of realistic models of the equation of state (EOS) that yield an accurate description of the properties of finite nuclei, support neutron stars of two solar masses, and provide a Lorentz covariant extrapolation to dense matter are used to confront its predictions against tidal polarizabilities extracted from the gravitational-wave data. Given the sensitivity of the gravitational-wave signal to the underlying EOS, limits on the tidal polarizability inferred from the observation translate into constraints on the neutron-star radius. Based on these constraints, models that predict a stiff symmetry energy, and thus large stellar radii, can be ruled out. Indeed, we deduce an upper limit on the radius of a 1.4M_{⊙} neutron star of R_{⋆}^{1.4}<13.76 km. Given the sensitivity of the neutron-skin thickness of ^{208}Pb to the symmetry energy, albeit at a lower density, we infer a corresponding upper limit of about R_{skin}^{208}≲0.25 fm. However, if the upcoming PREX-II experiment measures a significantly thicker skin, this may be evidence of a softening of the symmetry energy at high densities-likely indicative of a phase transition in the interior of neutron stars.

10.
Phys Rev Lett ; 120(18): 182701, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775364

RESUMO

We show that the neutron star in the transient system MXB 1659-29 has a core neutrino luminosity that substantially exceeds that of the modified Urca reactions (i.e., n+n→n+p+e^{-}+ν[over ¯]_{e} and inverse) and is consistent with the direct Urca (n→p+e^{-}+ν[over ¯]_{e} and inverse) reaction occurring in a small fraction of the core. Observations of the thermal relaxation of the neutron star crust following 2.5 yr of accretion allow us to measure the energy deposited into the core during accretion, which is then reradiated as neutrinos, and infer the core temperature. For a nucleonic core, this requires that the nucleons are unpaired and that the proton fraction exceeds a critical value to allow the direct Urca reaction to proceed. The neutron star in MXB 1659-29 is the first with a firmly detected thermal component in its x-ray spectrum that needs a fast neutrino-cooling process. Measurements of the temperature variation of the neutron star core during quiescence would place an upper limit on the core specific heat and serve as a check on the fraction of the neutron star core in which nucleons are unpaired.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA