Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003227

RESUMO

In Gaucher disease (GD), a relatively common sphingolipidosis, the mutant lysosomal enzyme acid ß-glucocerebrosidase (GCase), encoded by the GBA1 gene, fails to properly hydrolyze the sphingolipid glucosylceramide (GlcCer) in lysosomes, particularly of tissue macrophages. As a result, GlcCer accumulates, which, to a certain extent, is converted to its deacylated form, glucosylsphingosine (GlcSph), by lysosomal acid ceramidase. The inability of mutant GCase to degrade GlcSph further promotes its accumulation. The amount of mutant GCase in lysosomes depends on the amount of mutant ER enzyme that shuttles to them. In the case of many mutant GCase forms, the enzyme is largely misfolded in the ER. Only a fraction correctly folds and is subsequently trafficked to the lysosomes, while the rest of the misfolded mutant GCase protein undergoes ER-associated degradation (ERAD). The retention of misfolded mutant GCase in the ER induces ER stress, which evokes a stress response known as the unfolded protein response (UPR). GD is remarkably heterogeneous in clinical manifestation, including the variant without CNS involvement (type 1), and acute and subacute neuronopathic variants (types 2 and 3). The present review discusses animal models developed to study the molecular and cellular mechanisms underlying GD.


Assuntos
Doença de Gaucher , Animais , Doença de Gaucher/metabolismo , Psicosina , Resposta a Proteínas não Dobradas , Modelos Animais , Mutação
2.
Adv Drug Deliv Rev ; 187: 114402, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764179

RESUMO

Lysosomes have a critical role in maintaining normal cellular homeostasis mediated by their involvement in secretion, plasma membrane repair, cell signaling and energy metabolism. Lysosomal storage disorders (LSDs) are a group of approximately 50 rare disorders caused by lysosomal dysfunction that occur due to mutations in a gene of a lysosomal protein. Gaucher disease (GD), an autosomal recessive disorder and one of the most common LSDs, is caused by the deficiency of the lysosomal enzyme acid-ß-glucocerebrosidase (GCase), due to biallelic mutations in the GBA1 gene. Reduced GCase activity leads to the accumulation of glucosylceramide (GlcCer), which is deacylated by lysosomal acid ceramidase to a toxic metabolite, glucosylshpingosine (GlcSph). Most GBA1 variants are recognized as misfolded in the ER, where the retention for refolding attempts initiates stress and activates the stress response known as the Unfolded Protein Response (UPR). The distinct clinical subtypes of GD are based on whether there is primary involvement of the central nervous system. Type 1 GD (GD1) is the nonneuropathic type, however, the recent recognition of the association of GD with the development of parkinsonism defies this classification. Patients with GD1 and carriers of GBA1 mutations are at risk for the development of parkinsonian manifestations. Parkinson disease (PD), the second most prevalent neurodegenerative disease, culminates in a movement disorder with the premature death of the patients. In PD and related disorders, collectively called synucleinopathies, the hallmark pathology is α-synuclein positive aggregates referred to as Lewy bodies or Lewy neurites and the death of dopaminergic neurons. While PD is mostly sporadic, in ∼5-10% of cases, the disease results from pathogenic variants in a growing number of genes. The most common genetic cause of PD is mutations in GBA1. Two mechanisms have been proposed for this link: (A) a "gain of function" mechanism, in which mutant GCase (protein) contributes to aggregate formation and to the development of PD, and the (B) "haploinsufficiency" ("loss of function") model, suggesting that one normal GBA1 allele is insufficient to carry adequate GCase activity and functional deficiency of GCase impedes α-synuclein metabolism. Lysosomal dysfunction, compromised autophagy and mitophagy further enhance the accumulation of α-synuclein, which results in the development of PD pathology. The present review will elaborate on the biology of GD, its association with PD and related disorders, and discuss the possible mechanisms underlying this association.


Assuntos
Doença de Gaucher , Doenças Neurodegenerativas , Doença de Parkinson , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Lisossomos/metabolismo , Mutação , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Cells ; 10(3)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809074

RESUMO

Human GBA1 encodes lysosomal acid ß-glucocerebrosidase (GCase), which hydrolyzes cleavage of the beta-glucosidic linkage of glucosylceramide (GlcCer). Mutations in this gene lead to reduced GCase activity, accumulation of glucosylceramide and glucosylsphingosine, and development of Gaucher disease (GD). Drosophila melanogaster has two GBA1 orthologs. Thus far, GBA1b was documented as a bone fide GCase-encoding gene, while the role of GBA1a encoded protein remained unclear. In the present study, we characterized a mutant variant of the fly GBA1a, which underwent ERAD and mildly activated the UPR machinery. RNA-seq analyses of homozygous mutant flies revealed upregulation of inflammation-associated as well as of cell-cycle related genes and reduction in programmed cell death (PCD)-associated genes, which was confirmed by qRT-PCR. We also observed compromised cell death in the midgut of homozygous larvae and a reduction in pupation. Our results strongly indicated that GBA1a-encoded protein plays a role in midgut maturation during larvae development.


Assuntos
Sistema Digestório/enzimologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Glucosilceramidase/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sistema Digestório/embriologia , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Degradação Associada com o Retículo Endoplasmático , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Glucosilceramidase/genética , Homozigoto , Mediadores da Inflamação/metabolismo , Locomoção , Longevidade , Morfogênese , Mutação , Transdução de Sinais , Transcriptoma
4.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036426

RESUMO

Fabry disease, an X-linked recessive lysosomal disease, results from mutations in the GLA gene encoding lysosomal α-galactosidase A (α-Gal A). Due to these mutations, there is accumulation of globotriaosylceramide (GL-3) in plasma and in a wide range of cells throughout the body. Like other lysosomal enzymes, α-Gal A is synthesized on endoplasmic reticulum (ER) bound polyribosomes, and upon entry into the ER it undergoes glycosylation and folding. It was previously suggested that α-Gal A variants are recognized as misfolded in the ER and undergo ER-associated degradation (ERAD). In the present study, we used Drosophila melanogaster to model misfolding of α-Gal A mutants. We did so by creating transgenic flies expressing mutant α-Gal A variants and assessing development of ER stress, activation of the ER stress response and their relief with a known α-Gal A chaperone, migalastat. Our results showed that the A156V and the A285D α-Gal A mutants underwent ER retention, which led to activation of unfolded protein response (UPR) and ERAD. UPR could be alleviated by migalastat. When expressed in the fly's dopaminergic cells, misfolding of α-Gal A and UPR activation led to death of these cells and to a shorter life span, which could be improved, in a mutation-dependent manner, by migalastat.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Lisossomos/enzimologia , Dobramento de Proteína , alfa-Galactosidase/química , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacologia , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular , Sobrevivência Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Drosophila melanogaster/enzimologia , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Doença de Fabry/genética , Doença de Fabry/metabolismo , Imunofluorescência , Dobramento de Proteína/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , alfa-Galactosidase/genética
5.
J Clin Med ; 8(9)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505865

RESUMO

Gaucher disease (GD) results from mutations in the GBA1 gene, which encodes lysosomal glucocerebrosidase (GCase). The large number of mutations known to date in the gene lead to a heterogeneous disorder, which is divided into a non-neuronopathic, type 1 GD, and two neurological, type 2 and type 3, forms. We studied the two fly GBA1 orthologs, GBA1a and GBA1b. Each contains a Minos element insertion, which truncates its coding sequence. In the GBA1am/m flies, which express a mutant protein, missing 33 C-terminal amino acids, there was no decrease in GCase activity or substrate accumulation. However, GBA1bm/m mutant flies presented a significant decrease in GCase activity with concomitant substrate accumulation, which included C14:1 glucosylceramide and C14:0 glucosylsphingosine. GBA1bm/m mutant flies showed activation of the Unfolded Protein Response (UPR) and presented inflammation and neuroinflammation that culminated in development of a neuronopathic disease. Treatment with ambroxol did not rescue GCase activity or reduce substrate accumulation; however, it ameliorated UPR, inflammation and neuroinflammation, and increased life span. Our results highlight the resemblance between the phenotype of the GBA1bm/m mutant fly and neuronopathic GD and underlie its relevance in further GD studies as well as a model to test possible therapeutic modalities.

6.
Hum Mol Genet ; 28(11): 1768-1781, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615125

RESUMO

Gaucher disease (GD) patients and carriers of GD mutations have a higher propensity to develop Parkinson's disease (PD) in comparison to the non-GD population. This implies that mutant GBA1 allele is a predisposing factor for the development of PD. One of the major characteristics of PD is the presence of oligomeric α-synuclein-positive inclusions known as Lewy bodies in the dopaminergic neurons localized to the substantia nigra pars compacta. In the present study we tested whether presence of human mutant GCase leads to accumulation and aggregation of α-synuclein in two models: in SHSY5Y neuroblastoma cells endogenously expressing α-synuclein and stably transfected with human GCase variants, and in Drosophila melanogaster co-expressing normal human α-synuclein and mutant human GCase. Our results showed that heterologous expression of mutant, but not WT, human GCase in SHSY5Y cells, led to a significant stabilization of α-synuclein and to its aggregation. In parallel, there was also a significant stabilization of mutant, but not WT, GCase. Co-expression of human α-synuclein and human mutant GCase in the dopaminergic cells of flies initiated α-synuclein aggregation, earlier death of these cells and significantly shorter life span, compared with flies expressing α-synuclein or mutant GCase alone. Taken together, our results strongly indicate that human mutant GCase contributes to accumulation and aggregation of α-synuclein. In the fly, this aggregation leads to development of more severe parkinsonian signs in comparison to flies expressing either mutant GCase or α-synuclein alone.


Assuntos
Doença de Gaucher/genética , Glucosilceramidase/genética , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , alfa-Sinucleína/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Drosophila melanogaster/genética , Doença de Gaucher/metabolismo , Doença de Gaucher/patologia , Regulação da Expressão Gênica , Heterozigoto , Humanos , Corpos de Lewy/genética , Corpos de Lewy/metabolismo , Lisossomos/enzimologia , Mutação/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Agregação Patológica de Proteínas/patologia
7.
Biochem Biophys Res Commun ; 497(2): 605-611, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29454964

RESUMO

Intracellular membrane fusion depends on the presence of specific mediators, the vesicle (v-) and the target (t-) SNAREs (Soluble N-ethylmaleimide-sensitive factor, NSF, attachment protein SNAP receptors), whose interaction brings apposing membranes to close proximity and initiates their fusion. SNAP29 (synaptosomal-associated protein 29), a t-SNARE protein, is involved in multiple fusion events during intracellular transport and affects structure of organelles such as the Golgi apparatus and focal adhesions. Mutations in SNAP29 gene result in CEDNIK (Cerebral dysgenesis, neuropathy, ichthyosis and palmoplantar keratoderma) syndrome. In the present study, we show that NEK3 (NIMA-never in mitosis gene A-related kinase 3)-mediated serine 105 (S105) phosphorylation of SNAP29 directs its membrane association, without which cells present defective focal adhesion formation, impaired Golgi structure and attenuated cellular recycling. In contrast to a phosphorylation-defective serine 105 to alanine (S105A) mutant, wildtype SNAP29, partially rescued the abnormal morphology of a CEDNIK patient derived fibroblasts. Our results highlight the importance of NEK3-mediated S105 phosphorylation of SNAP29 for its membrane localization and for membrane fusion dependent processes.


Assuntos
Ceratodermia Palmar e Plantar/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Síndromes Neurocutâneas/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas SNARE/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Fibroblastos/metabolismo , Fibroblastos/patologia , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Ceratodermia Palmar e Plantar/patologia , Síndromes Neurocutâneas/patologia , Fosforilação
8.
Blood Cells Mol Dis ; 68: 21-29, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-27856178

RESUMO

Chronic presence of mutant, misfolded proteins in the endoplasmic reticulum (ER) initiates ER stress and induces the Unfolded Protein Response (UPR). In Gaucher disease (GD), resulting from mutations in the GBA1 gene, encoding lysosomal acid ß-glucocerebrosidase (GCase), a certain fraction of the mutant variants is retained in the ER and activates the UPR. We have previously shown UPR activation in GD derived fibroblasts, in fibroblasts that derived from carriers of GD mutations and in Drosophila models of carriers of GD mutations. In the present work we extended our studies to include a large collection of fibroblasts, EBV-transformed B-cells and white blood cells (WBCs) that derived from GD patients. The results showed UPR activation in all tested cells. They also indicated that transcription of the GBA1 gene is upregulated through activation of the UPR-induced CHOP transcription factor. Transcription of the MAN2B gene, encoding alpha-mannosidase and of the ACP gene, encoding acid phosphatase was also elevated presumably through CHOP activation. Our results highlight the existence of chronic stress in GD derived cells due to the presence of ER-retained mutant GCase, which leads to upregulation of GBA1 expression.


Assuntos
Doença de Gaucher/genética , Glucosilceramidase/genética , Fator de Transcrição CHOP/metabolismo , Ativação Transcricional , Resposta a Proteínas não Dobradas , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Doença de Gaucher/patologia , Humanos , Mutação , Regiões Promotoras Genéticas
9.
PLoS One ; 12(3): e0174495, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28319181

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0169639.].

10.
PLoS One ; 12(1): e0169639, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28060904

RESUMO

Endocytosis is a multi-step process involving a large number of proteins, both general factors, such as clathrin and adaptor protein complexes, and unique proteins, which modulate specialized endocytic processes, like the EHD proteins. EHDs are a family of Eps15 Homology Domain containing proteins that consists of four mammalian homologs, one C. elegans, one Drosophila melanogaster and two plants orthologs. These membrane-associated proteins are involved in different steps of endocytic trafficking pathways. We have previously shown that the Drosophila EHD ortholog, PAST1, associates predominantly with the plasma membrane. Mutations in Past1 result in defects in endocytosis, male sterility, temperature sensitivity and premature death of the flies. Also, Past1 genetically interacts with Notch. In the present study, we investigated the role of PAST1 in the developing fly eye. In mutant flies lacking PAST1, abnormal differentiation of photoreceptors R1, R6 and R7 was evident, with partial penetrance. Likewise, five cone cells were present instead of four. Expression of transgenic PAST1 resulted in a dominant negative effect, with a phenotype similar to that of the deletion mutant, and appearance of additional inter-ommatidial pigment cells. Our results strongly suggest a role for PAST1 in differentiation of photoreceptors R1/R6/R7 and cone cells of the fly ommatidia.

11.
Hum Mutat ; 37(11): 1121-1136, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27449603

RESUMO

In Gaucher disease (GD), mutant lysosomal acid ß-glucocerebrosidase fails to properly hydrolyze its substrate, glucosylceramide, which accumulates in the lysosomes. Due to its phenotypic heterogeneity, GD has been classified into type 1, non-neuronopathic, and types 2 and 3, the neuronopathic forms, based on the primary involvement of the central nervous system. Neuroinflammation and necroptotic death may appear in the neuronopathic forms of GD, whereas type 1 GD patients may develop Parkinson disease (PD), a prototype of protein misfolding disorders of the nervous system. PD is significantly more prevalent among GD carriers and patients than among the non-GD populations. It is apparent that the amount of mutant enzyme present in lysosomes depends on the amount of mutant enzyme recognized as correctly folded in the endoplasmic reticulum (ER) for physiologically correct transport through the Golgi apparatus to the lysosome. Mutant enzyme recognized as misfolded is retained in the ER, inducing the Unfolded Protein Response. In the current review, we present three discrete areas of interest: molecular and cellular mechanisms underlying the association between GD and PD; the clinical and genetic associations between GD and PD; and treatment options for GD. We also discuss the relevance of induced pleuripotent stem cells to the above associations.


Assuntos
Doença de Gaucher/classificação , Doença de Gaucher/genética , Glucosilceramidase/genética , Doença de Parkinson/genética , Idade de Início , Animais , Linhagem Celular , Doença de Gaucher/complicações , Glucosilceramidase/química , Humanos , Mitofagia , Mutação , Dobramento de Proteína , Resposta a Proteínas não Dobradas
12.
Hum Mol Genet ; 25(13): 2712-2727, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27162249

RESUMO

Gaucher disease (GD) results from mutations in the acid ß-glucocerebrosidase (GCase) encoding gene, GBA, which leads to accumulation of glucosylceramides. GD patients and carriers of GD mutations have a significantly higher propensity to develop Parkinson disease (PD) in comparison to the non-GD population. In this study, we used the fruit fly Drosophila melanogaster to show that development of PD in carriers of GD mutations results from the presence of mutant GBA alleles. Drosophila has two GBA orthologs (CG31148 and CG31414), each of which has a minos insertion, which creates C-terminal deletion in the encoded GCase. Flies double heterozygous for the endogenous mutant GBA orthologs presented Unfolded Protein Response (UPR) and developed parkinsonian signs, manifested by death of dopaminergic cells, defective locomotion and a shorter life span. We also established transgenic flies carrying the mutant human N370S, L444P and the 84GG variants. UPR activation and development of parkinsonian signs could be recapitulated in flies expressing these three mutant variants.UPR and parkinsonian signs could be partially rescued by growing the double heterozygous flies, or flies expressing the N370S or the L444P human mutant GCase variants, in the presence of the pharmacological chaperone ambroxol, which binds and removes mutant GCase from the endoplasmic reticulum (ER). However flies expressing the 84GG mutant, that does not express mature GCase, did not exhibit rescue by ambroxol. Our results strongly suggest that the presence of a mutant GBA allele in dopaminergic cells leads to ER stress and to their death, and contributes to development of PD.


Assuntos
Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Ambroxol/metabolismo , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Doença de Gaucher/genética , Heterozigoto , Humanos , Mutação , Doença de Parkinson/genética , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia
14.
J Invest Dermatol ; 136(3): 672-679, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747696

RESUMO

Loss-of-function mutations in the synaptosomal-associated protein 29 (SNAP29) gene cause the cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma syndrome. In this study, we created total (Snap29(-/-)) as well as keratinocyte-specific (Snap29(fl/fl)/K14-Cre) Snap29 knockout mice. Both mutant mice exhibited a congenital distinct ichthyotic phenotype resulting in neonatal lethality. Mutant mice revealed acanthosis and hyperkeratosis as well as abnormal keratinocyte differentiation and increased proliferation. In addition, the epidermal barrier was severely impaired. These results indicate an essential role of SNAP29 in epidermal differentiation and barrier formation. Markedly decreased deposition of lamellar body contents in mutant mice epidermis and the observation of malformed lamellar bodies indicate severe impairments in lamellar body function due to the Snap29 knockout. We also found increased microtubule associated protein-1 light chain 3, isoform B-II levels, unchanged p62/SQSTM1 protein amounts, and strong induction of the endoplasmic reticulum stress marker C/EBP homologous protein in mutant mice. This emphasizes a role of SNAP29 in autophagy and endoplasmic reticulum stress. Our murine models serve as powerful tools for investigating keratinocyte differentiation processes and provide insights into the essential contribution of SNAP29 to epidermal differentiation.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica , Ceratodermia Palmar e Plantar/patologia , Síndromes Neurocutâneas/patologia , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Animais , Autofagia/genética , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Células Epidérmicas , Imuno-Histoquímica , Queratinócitos/metabolismo , Queratinócitos/patologia , Ceratodermia Palmar e Plantar/genética , Camundongos , Camundongos Knockout , Síndromes Neurocutâneas/genética , Distribuição Aleatória , Valores de Referência
15.
PLoS One ; 10(7): e0134053, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26226295

RESUMO

Endocytosis defines the entry of molecules or macromolecules through the plasma membrane as well as membrane trafficking in the cell. It depends on a large number of proteins that undergo protein-protein and protein-phospholipid interactions. EH Domain containing (EHDs) proteins formulate a family, whose members participate in different stages of endocytosis. Of the four mammalian EHDs (EHD1-EHD4) EHD1 and EHD3 control traffic to the endocytic recycling compartment (ERC) and from the ERC to the plasma membrane, while EHD2 modulates internalization. Recently, we have shown that EHD2 undergoes SUMOylation, which facilitates its exit from the nucleus, where it serves as a co-repressor. In the present study, we tested whether EHD3 undergoes SUMOylation and what is its role in endocytic recycling. We show, both in-vitro and in cell culture, that EHD3 undergoes SUMOylation. Localization of EHD3 to the tubular structures of the ERC depends on its SUMOylation on lysines 315 and 511. Absence of SUMOylation of EHD3 has no effect on its dimerization, an important factor in membrane localization of EHD3, but has a dominant negative effect on its appearance in tubular ERC structures. Non-SUMOylated EHD3 delays transferrin recycling from the ERC to the cell surface. Our findings indicate that SUMOylation of EHD3 is involved in tubulation of the ERC membranes, which is important for efficient recycling.


Assuntos
Proteínas de Transporte/fisiologia , Endocitose/fisiologia , Sumoilação/fisiologia , Animais , Western Blotting , Células COS , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Células HEK293 , Humanos , Microscopia Confocal
16.
Orphanet J Rare Dis ; 9: 86, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24935484

RESUMO

BACKGROUND: Parkinson's disease (PD) is a movement neurodegenerative disorder characterized by death of dopaminergic neurons in the substantia nigra pars compacta of the brain that leads to movement impairments including bradykinesia, resting tremor, postural instability and rigidity. Mutations in several genes have been associated with familial PD, such as parkin, pink, DJ-1, LRKK2 and α-synuclein. Lately, mutations in the GBA gene were recognized as a major cause for the development of PD.Mutations in the GBA gene, which encodes for lysosomal ß-glucocerebrosidase (GCase), lead to Gaucher disease (GD), an autosomal recessive sphingolipidosis characterized by accumulation of glucosylceramide, mainly in monocyte-derived cells. It is a heterogeneous disease, with Type 1 patients that do not present any primary neurological signs, and Type 2 or Type 3 patients who suffer from a neurological disease. The propensity of type 1 GD patients and carriers of GD mutations to develop PD is significantly higher than that of the non-GD population.We have shown in the past that parkin and mutant GCase, expressed in heterologous systems, interact with each other, and that normal but not mutant parkin mediates K48-dependent proteasomal degradation of mutant GCase variants. METHODS: We tested possible competition between mutant GCase and PARIS or ARTS on the E3 ubiquitin ligase parkin, using coimmunoprecipitation assays and quantitative real-time PCR. RESULTS: We show that endogenous mutant GCase variants associate with parkin and undergo parkin-dependent degradation. Mutant GCase competes with the known parkin substrates PARIS and ARTS, whose accumulation leads to apoptosis. Dopaminergic cells expressing mutant GCase are more susceptible to apoptotic stimuli than dopaminergic cells expressing normal GCase, present increased cleavage of caspase 3 and caspase 9 levels and undergo cell death. CONCLUSIONS: Our results imply that presence of mutant GCase leads to accumulation of parkin substrates like PARIS and ARTS, which may cause apoptotic death of cells.


Assuntos
Glucosilceramidase/metabolismo , Mutação , Proteínas Repressoras/metabolismo , Septinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Apoptose , Caspases/metabolismo , Linhagem Celular , Primers do DNA , Feminino , Glucosilceramidase/genética , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Especificidade por Substrato , Ubiquitinação
17.
Orphanet J Rare Dis ; 8: 140, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24020503

RESUMO

BACKGROUND: In Gaucher disease (GD), resulting from mutations in the GBA gene, mutant ß-glucocerebrosidase (GCase) molecules are recognized as misfolded in the endoplasmic reticulum (ER). They are retrotranslocated to the cytoplasm, where they are ubiquitinated and undergo proteasomal degradation in a process known as the ER Associated Degradation (ERAD). We have shown in the past that the degree of ERAD of mutant GCase correlates with GD severity.Persistent presence of mutant, misfolded protein molecules in the ER leads to ER stress and evokes the unfolded protein response (UPR). METHODS: We investigated the presence of UPR in several GD models, using molecular and behavioral assays. RESULTS: Our results show the existence of UPR in skin fibroblasts from GD patients and carriers of GD mutations. We could recapitulate UPR in two different Drosophila models for carriers of GD mutations: flies heterozygous for the endogenous mutant GBA orthologs and flies expressing the human N370S or L444P mutant GCase variants. We encountered early death in both fly models, indicating the deleterious effect of mutant GCase during development. The double heterozygous flies, and the transgenic flies, expressing mutant GCase in dopaminergic/serotonergic cells developed locomotion deficit. CONCLUSION: Our results strongly suggest that mutant GCase induces the UPR in GD patients as well as in carriers of GD mutations and leads to development of locomotion deficit in flies heterozygous for GD mutations.


Assuntos
Drosophila/metabolismo , Doença de Gaucher/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Resposta a Proteínas não Dobradas/genética
18.
Nat Genet ; 45(10): 1244-1248, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23974871

RESUMO

The relative contribution of immunological dysregulation and impaired epithelial barrier function to allergic diseases is still a matter of debate. Here we describe a new syndrome featuring severe dermatitis, multiple allergies and metabolic wasting (SAM syndrome) caused by homozygous mutations in DSG1. DSG1 encodes desmoglein 1, a major constituent of desmosomes, which connect the cell surface to the keratin cytoskeleton and have a crucial role in maintaining epidermal integrity and barrier function. Mutations causing SAM syndrome resulted in lack of membrane expression of DSG1, leading to loss of cell-cell adhesion. In addition, DSG1 deficiency was associated with increased expression of a number of genes encoding allergy-related cytokines. Our deciphering of the pathogenesis of SAM syndrome substantiates the notion that allergy may result from a primary structural epidermal defect.


Assuntos
Dermatite/genética , Desmogleína 1/genética , Hipersensibilidade/genética , Síndrome de Emaciação/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Índice de Gravidade de Doença , Síndrome , Síndrome de Emaciação/metabolismo
19.
Blood Cells Mol Dis ; 50(2): 141-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23158495

RESUMO

Gaucher disease (GD) is characterized by accumulation of glucosylceramide in lysosomes due to mutations in the GBA1 gene encoding the lysosomal hydrolase ß-glucocerebrosidase (GCase). The disease has a broad spectrum of phenotypes, which were divided into three different Types; Type 1 GD is not associated with primary neurological disease while Types 2 and 3 are associated with central nervous system disease. GCase molecules are synthesized on endoplasmic reticulum (ER)-bound polyribosomes, translocated into the ER and following modifications and correct folding, shuttle to the lysosomes. Mutant GCase molecules, which fail to fold correctly, undergo ER associated degradation (ERAD) in the proteasomes, the degree of which is one of the factors that determine GD severity. Several pharmacological chaperones have already been shown to assist correct folding of mutant GCase molecules in the ER, thus facilitating their trafficking to the lysosomes. Ambroxol, a known expectorant, is one such chaperone. Here we show that ambroxol increases both the lysosomal fraction and the enzymatic activity of several mutant GCase variants in skin fibroblasts derived from Type 1 and Type 2 GD patients.


Assuntos
Ambroxol/uso terapêutico , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/efeitos dos fármacos , Ambroxol/administração & dosagem , Ambroxol/efeitos adversos , Ambroxol/farmacologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/enzimologia , Terapia Combinada , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Retículo Endoplasmático/fisiologia , Terapia de Reposição de Enzimas , Estabilidade Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Doença de Gaucher/patologia , Glucosilceramidase/química , Glucosilceramidase/genética , Glucosilceramidase/uso terapêutico , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Uso Off-Label , Cultura Primária de Células , Dobramento de Proteína/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Pele
20.
Hum Mol Genet ; 22(7): 1316-27, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23255161

RESUMO

Inability to properly degrade unfolded or misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and unfolded protein response. This is particularly important in cases of diseases in which the mutant proteins undergo ER-associated degradation (ERAD), as in Gaucher disease (GD). GD is a genetic, autosomal recessive disease that results from mutations in the GBA1 gene, encoding the lysosomal enzyme acid ß-glucocerebrosidase (GCase). We have shown that mutant GCase variants undergo ERAD, the degree of which is a major determinant of disease severity. Most ERAD substrates undergo polyubiquitination and proteasomal degradation. Therefore, one expects that mutant GCase variants are substrates for several E3 ubiquitin ligases in different cells. We tested the possibility that ITCH, a known E3 ubiquitin ligase, with a pivotal role in proliferation and differentiation of the skin, recognizes mutant GCase variants and mediates their polyubiquitination and degradation. Our results strongly suggest that ITCH interacts with mutant GCase variants and mediates their lysine 48 polyubiquitination and degradation.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Doença de Gaucher/enzimologia , Glucosilceramidase/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Repressoras/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Estabilidade Enzimática , Fibroblastos/enzimologia , Doença de Gaucher/genética , Doença de Gaucher/patologia , Expressão Gênica , Glucosilceramidase/genética , Células HEK293 , Humanos , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Poliubiquitina/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...