Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31566566

RESUMO

Soluble guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) in mammalian nitric oxide signaling. We determined structures of full-length Manduca sexta sGC in both inactive and active states using cryo-electron microscopy. NO and the sGC-specific stimulator YC-1 induce a 71° rotation of the heme-binding ß H-NOX and PAS domains. Repositioning of the ß H-NOX domain leads to a straightening of the coiled-coil domains, which, in turn, use the motion to move the catalytic domains into an active conformation. YC-1 binds directly between the ß H-NOX domain and the two CC domains. The structural elongation of the particle observed in cryo-EM was corroborated in solution using small angle X-ray scattering (SAXS). These structures delineate the endpoints of the allosteric transition responsible for the major cyclic GMP-dependent physiological effects of NO.


Assuntos
Microscopia Crioeletrônica , Manduca/enzimologia , Guanilil Ciclase Solúvel/ultraestrutura , Regulação Alostérica , Animais , Indazóis/metabolismo , Óxido Nítrico/metabolismo , Conformação Proteica
2.
Biochemistry ; 58(17): 2250-2259, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30946781

RESUMO

Signaling pathways that involve diatomic gases in photosynthetic organisms are not well understood. Exposure to nitric oxide or carbon monoxide is known to elicit certain responses in some photosynthetic organisms. For example, Chlamydomonas reinhardtii grown in low-iron media responds to exogenous carbon monoxide by increasing cell growth and intracellular chlorophyll levels. Here, we characterize Cyg11, a gas-responsive soluble guanylate cyclase from the eukaryotic green alga C. reinhardtii that converts GTP to cGMP. Cyg11 transcription is upregulated when C. reinhardtii is grown in iron-limited media, suggesting its importance in nutrient-limited environments. Cyg11 is purified as a homodimer and is activated by nitric oxide (2.5-fold over basal activity) and carbon monoxide (6.3-fold). The heme binding stoichiometry of Cyg11 was found to be one heme per homodimer, an unexpected result based on the sequence and oligomerization state of the enzyme. Gas binding properties, the kinetics of gas binding, and the ligand-modulated activity of Cyg11 are consistent with CO as the relevant physiological ligand.


Assuntos
Proteínas de Algas/metabolismo , Monóxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimologia , Guanilil Ciclase Solúvel/metabolismo , Proteínas de Algas/química , Proteínas de Algas/genética , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Heme/química , Heme/metabolismo , Cinética , Óxido Nítrico/metabolismo , Ligação Proteica , Multimerização Proteica , Transdução de Sinais , Guanilil Ciclase Solúvel/química , Guanilil Ciclase Solúvel/genética , Regulação para Cima
3.
Proc Natl Acad Sci U S A ; 116(14): 7015-7020, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894487

RESUMO

Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage Plasmodium falciparum and Cryptosporidium parvum in cell-culture studies. Target deconvolution in P. falciparum has shown that cladosporin inhibits lysyl-tRNA synthetase (PfKRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both PfKRS1 and C. parvum KRS (CpKRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED90 = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between PfKRS1 and CpKRS. This series of compounds inhibit CpKRS and C. parvum and Cryptosporidium hominis in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for PfKRS1 and CpKRS vs. (human) HsKRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis.


Assuntos
Criptosporidiose , Cryptosporidium parvum/enzimologia , Inibidores Enzimáticos/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Malária Falciparum , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Animais , Criptosporidiose/tratamento farmacológico , Criptosporidiose/enzimologia , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Humanos , Lisina-tRNA Ligase/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/enzimologia , Camundongos SCID , Proteínas de Protozoários/metabolismo
4.
Nitric Oxide ; 77: 65-74, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29704567

RESUMO

Soluble guanylate cyclase (sGC) is responsible for transducing the gaseous signaling molecule nitric oxide (NO) into the ubiquitous secondary signaling messenger cyclic guanosine monophosphate in eukaryotic organisms. sGC is exquisitely tuned to respond to low levels of NO, allowing cells to respond to non-toxic levels of NO. In this review, the structure of sGC is discussed in the context of sGC activation and deactivation. The sequence of events in the activation pathway are described into a comprehensive model of in vivo sGC activation as elucidated both from studies with purified enzyme and those done in cells. This model is then used to discuss the deactivation of sGC, as well as the molecular mechanisms of pathophysiological deactivation.


Assuntos
Guanilil Ciclase Solúvel/metabolismo , Animais , Ativação Enzimática , Humanos , Óxido Nítrico/metabolismo , Transdução de Sinais
5.
ACS Infect Dis ; 3(1): 34-44, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-27798837

RESUMO

Plasmodium falciparum (Pf) prolyl-tRNA synthetase (ProRS) is one of the few chemical-genetically validated drug targets for malaria, yet highly selective inhibitors have not been described. In this paper, approximately 40,000 compounds were screened to identify compounds that selectively inhibit PfProRS enzyme activity versus Homo sapiens (Hs) ProRS. X-ray crystallography structures were solved for apo, as well as substrate- and inhibitor-bound forms of PfProRS. We identified two new inhibitors of PfProRS that bind outside the active site. These two allosteric inhibitors showed >100 times specificity for PfProRS compared to HsProRS, demonstrating this class of compounds could overcome the toxicity related to HsProRS inhibition by halofuginone and its analogues. Initial medicinal chemistry was performed on one of the two compounds, guided by the cocrystallography of the compound with PfProRS, and the results can instruct future medicinal chemistry work to optimize these promising new leads for drug development against malaria.


Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Plasmodium falciparum/enzimologia , Sítios de Ligação , Clonagem Molecular , Descoberta de Drogas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Conformação Proteica , Bibliotecas de Moléculas Pequenas
6.
Soft Matter ; 12(35): 7364-71, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27510092

RESUMO

Giant unilamellar vesicles are a powerful and common tool employed in biophysical studies of lipid membranes. Here we evaluate a recently introduced method of vesicle formation, "continuous droplet interface crossing encapsulation" (cDICE). This method produces monodisperse giant unilamellar vesicles of controlled sizes and high encapsulation efficiencies, using readily available instrumentation. We find that mixtures of phospholipids within vesicle membranes produced by cDICE undergo phase separation at the same characteristic temperatures as lipids in vesicles formed by a complementary technique. We find that the cDICE method is effective both when vesicles are produced from charged lipids and when the surrounding buffer contains a high concentration of salt. A shortcoming of the technique is that cholesterol is not substantially incorporated into vesicle membranes.


Assuntos
Lipídeos/química , Lipossomas Unilamelares , Colesterol , Íons , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...