Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Transl Stroke Res ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689162

RESUMO

The recently published DISCHARGE-1 trial supports the observations of earlier autopsy and neuroimaging studies that almost 70% of all focal brain damage after aneurysmal subarachnoid hemorrhage are anemic infarcts of the cortex, often also affecting the white matter immediately below. The infarcts are not limited by the usual vascular territories. About two-fifths of the ischemic damage occurs within ~ 48 h; the remaining three-fifths are delayed (within ~ 3 weeks). Using neuromonitoring technology in combination with longitudinal neuroimaging, the entire sequence of both early and delayed cortical infarct development after subarachnoid hemorrhage has recently been recorded in patients. Characteristically, cortical infarcts are caused by acute severe vasospastic events, so-called spreading ischemia, triggered by spontaneously occurring spreading depolarization. In locations where a spreading depolarization passes through, cerebral blood flow can drastically drop within a few seconds and remain suppressed for minutes or even hours, often followed by high-amplitude, sustained hyperemia. In spreading depolarization, neurons lead the event, and the other cells of the neurovascular unit (endothelium, vascular smooth muscle, pericytes, astrocytes, microglia, oligodendrocytes) follow. However, dysregulation in cells of all three supersystems-nervous, vascular, and immune-is very likely involved in the dysfunction of the neurovascular unit underlying spreading ischemia. It is assumed that subarachnoid blood, which lies directly on the cortex and enters the parenchyma via glymphatic channels, triggers these dysregulations. This review discusses the neuroglial, neurovascular, and neuroimmunological dysregulations in the context of spreading depolarization and spreading ischemia as critical elements in the pathogenesis of cortical infarcts after subarachnoid hemorrhage.

2.
Nat Neurosci ; 27(3): 409-420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366144

RESUMO

Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Proteômica , Tronco Encefálico , Cerebelo , Perfilação da Expressão Gênica
3.
Transl Stroke Res ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396252

RESUMO

While subarachnoid hemorrhage is the second most common hemorrhagic stroke in epidemiologic studies, the recent DISCHARGE-1 trial has shown that in reality, three-quarters of focal brain damage after subarachnoid hemorrhage is ischemic. Two-fifths of these ischemic infarctions occur early and three-fifths are delayed. The vast majority are cortical infarcts whose pathomorphology corresponds to anemic infarcts. Therefore, we propose in this review that subarachnoid hemorrhage as an ischemic-hemorrhagic stroke is rather a third, separate entity in addition to purely ischemic or hemorrhagic strokes. Cumulative focal brain damage, determined by neuroimaging after the first 2 weeks, is the strongest known predictor of patient outcome half a year after the initial hemorrhage. Because of the unique ability to implant neuromonitoring probes at the brain surface before stroke onset and to perform longitudinal MRI scans before and after stroke, delayed cerebral ischemia is currently the stroke variant in humans whose pathophysiological details are by far the best characterized. Optoelectrodes located directly over newly developing delayed infarcts have shown that, as mechanistic correlates of infarct development, spreading depolarizations trigger (1) spreading ischemia, (2) severe hypoxia, (3) persistent activity depression, and (4) transition from clustered spreading depolarizations to a negative ultraslow potential. Furthermore, traumatic brain injury and subarachnoid hemorrhage are the second and third most common etiologies of brain death during continued systemic circulation. Here, we use examples to illustrate that although the pathophysiological cascades associated with brain death are global, they closely resemble the local cascades associated with the development of delayed cerebral infarcts.

4.
Brain Commun ; 5(2): fcad080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038498

RESUMO

In DISCHARGE-1, a recent Phase III diagnostic trial in aneurysmal subarachnoid haemorrhage patients, spreading depolarization variables were found to be an independent real-time biomarker of delayed cerebral ischaemia. We here investigated based on prospectively collected data from DISCHARGE-1 whether delayed infarcts in the anterior, middle, or posterior cerebral artery territories correlate with (i) extravascular blood volumes; (ii) predefined spreading depolarization variables, or proximal vasospasm assessed by either (iii) digital subtraction angiography or (iv) transcranial Doppler-sonography; and whether spreading depolarizations and/or vasospasm are mediators between extravascular blood and delayed infarcts. Relationships between variable groups were analysed using Spearman correlations in 136 patients. Thereafter, principal component analyses were performed for each variable group. Obtained components were included in path models with a priori defined structure. In the first path model, we only included spreading depolarization variables, as our primary interest was to investigate spreading depolarizations. Standardised path coefficients were 0.22 for the path from extravascular bloodcomponent to depolarizationcomponent (P = 0.010); and 0.44 for the path from depolarizationcomponent to the first principal component of delayed infarct volume (P < 0.001); but only 0.07 for the direct path from bloodcomponent to delayed infarctcomponent (P = 0.36). Thus, the role of spreading depolarizations as a mediator between blood and delayed infarcts was confirmed. In the principal component analysis of extravascular blood volume, intraventricular haemorrhage was not represented in the first component. Therefore, based on the correlation analyses, we also constructed another path model with bloodcomponent without intraventricular haemorrhage as first and intraventricular haemorrhage as second extrinsic variable. We found two paths, one from (subarachnoid) bloodcomponent to delayed infarctcomponent with depolarizationcomponent as mediator (path coefficients from bloodcomponent to depolarizationcomponent = 0.23, P = 0.03; path coefficients from depolarizationcomponent to delayed infarctcomponent = 0.29, P = 0.002), and one from intraventricular haemorrhage to delayed infarctcomponent with angiographic vasospasmcomponent as mediator variable (path coefficients from intraventricular haemorrhage to vasospasmcomponent = 0.24, P = 0.03; path coefficients from vasospasmcomponent to delayed infarctcomponent = 0.35, P < 0.001). Human autopsy studies shaped the hypothesis that blood clots on the cortex surface suffice to cause delayed infarcts beneath the clots. Experimentally, clot-released factors induce cortical spreading depolarizations that trigger (i) neuronal cytotoxic oedema and (ii) spreading ischaemia. The statistical mediator role of spreading depolarization variables between subarachnoid blood volume and delayed infarct volume supports this pathogenetic concept. We did not find that angiographic vasospasm triggers spreading depolarizations, but angiographic vasospasm contributed to delayed infarct volume. This could possibly result from enhancement of spreading depolarization-induced spreading ischaemia by reduced upstream blood supply.

5.
J Cereb Blood Flow Metab ; 42(10): 1944-1960, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35702017

RESUMO

The development of ischemic lesions has primarily been studied in horizontal cortical space. However, how ischemic lesions develop through the cortical depth remains largely unknown. We explored this question using direct current coupled recordings at different cortical depths using linear arrays of iridium electrodes in the focal epipial endothelin-1 (ET1) ischemia model in the rat barrel cortex. ET1-induced impairments were characterized by a vertical gradient with (i) rapid suppression of the spontaneous activity in the superficial cortical layers at the onset of ischemia, (ii) compartmentalization of spreading depolarizations (SDs) to the deep layers during progression of ischemia, and (iii) deeper suppression of activity and larger histological lesion size in superficial cortical layers. The level of impairments correlated strongly with the rate of spontaneous activity suppression, the rate of SD onset after ET1 application, and the amplitude of giant negative ultraslow potentials (∼-70 mV), which developed during ET1 application and were similar to the tent-shaped ultraslow potentials observed during focal ischemia in the human cortex. Thus, in the epipial ET1 ischemia model, ischemic lesions develop progressively from the surface to the cortical depth, and early changes in electrical activity at the onset of ET1-induced ischemia reliably predict the severity of ischemic damage.


Assuntos
Isquemia Encefálica , Depressão Alastrante da Atividade Elétrica Cortical , Animais , Isquemia Encefálica/patologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Endotelina-1 , Humanos , Irídio , Isquemia , Ratos
6.
Brain ; 145(4): 1264-1284, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35411920

RESUMO

Focal brain damage after aneurysmal subarachnoid haemorrhage predominantly results from intracerebral haemorrhage, and early and delayed cerebral ischaemia. The prospective, observational, multicentre, cohort, diagnostic phase III trial, DISCHARGE-1, primarily investigated whether the peak total spreading depolarization-induced depression duration of a recording day during delayed neuromonitoring (delayed depression duration) indicates delayed ipsilateral infarction. Consecutive patients (n = 205) who required neurosurgery were enrolled in six university hospitals from September 2009 to April 2018. Subdural electrodes for electrocorticography were implanted. Participants were excluded on the basis of exclusion criteria, technical problems in data quality, missing neuroimages or patient withdrawal (n = 25). Evaluators were blinded to other measures. Longitudinal MRI, and CT studies if clinically indicated, revealed that 162/180 patients developed focal brain damage during the first 2 weeks. During 4.5 years of cumulative recording, 6777 spreading depolarizations occurred in 161/180 patients and 238 electrographic seizures in 14/180. Ten patients died early; 90/170 developed delayed infarction ipsilateral to the electrodes. Primary objective was to investigate whether a 60-min delayed depression duration cut-off in a 24-h window predicts delayed infarction with >0.60 sensitivity and >0.80 specificity, and to estimate a new cut-off. The 60-min cut-off was too short. Sensitivity was sufficient [= 0.76 (95% confidence interval: 0.65-0.84), P = 0.0014] but specificity was 0.59 (0.47-0.70), i.e. <0.80 (P < 0.0001). Nevertheless, the area under the receiver operating characteristic (AUROC) curve of delayed depression duration was 0.76 (0.69-0.83, P < 0.0001) for delayed infarction and 0.88 (0.81-0.94, P < 0.0001) for delayed ischaemia (reversible delayed neurological deficit or infarction). In secondary analysis, a new 180-min cut-off indicated delayed infarction with a targeted 0.62 sensitivity and 0.83 specificity. In awake patients, the AUROC curve of delayed depression duration was 0.84 (0.70-0.97, P = 0.001) and the prespecified 60-min cut-off showed 0.71 sensitivity and 0.82 specificity for reversible neurological deficits. In multivariate analysis, delayed depression duration (ß = 0.474, P < 0.001), delayed median Glasgow Coma Score (ß = -0.201, P = 0.005) and peak transcranial Doppler (ß = 0.169, P = 0.016) explained 35% of variance in delayed infarction. Another key finding was that spreading depolarization-variables were included in every multiple regression model of early, delayed and total brain damage, patient outcome and death, strongly suggesting that they are an independent biomarker of progressive brain injury. While the 60-min cut-off of cumulative depression in a 24-h window indicated reversible delayed neurological deficit, only a 180-min cut-off indicated new infarction with >0.60 sensitivity and >0.80 specificity. Although spontaneous resolution of the neurological deficit is still possible, we recommend initiating rescue treatment at the 60-min rather than the 180-min cut-off if progression of injury to infarction is to be prevented.


Assuntos
Lesões Encefálicas , Depressão Alastrante da Atividade Elétrica Cortical , Hemorragia Subaracnóidea , Lesões Encefálicas/complicações , Infarto Cerebral/complicações , Eletrocorticografia , Humanos , Estudos Prospectivos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/diagnóstico por imagem
7.
Front Cell Neurosci ; 16: 837650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237133

RESUMO

Neuronal cytotoxic edema is the morphological correlate of the near-complete neuronal battery breakdown called spreading depolarization, or conversely, spreading depolarization is the electrophysiological correlate of the initial, still reversible phase of neuronal cytotoxic edema. Cytotoxic edema and spreading depolarization are thus different modalities of the same process, which represents a metastable universal reference state in the gray matter of the brain close to Gibbs-Donnan equilibrium. Different but merging sections of the spreading-depolarization continuum from short duration waves to intermediate duration waves to terminal waves occur in a plethora of clinical conditions, including migraine aura, ischemic stroke, traumatic brain injury, aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI), spontaneous intracerebral hemorrhage, subdural hematoma, development of brain death, and the dying process during cardio circulatory arrest. Thus, spreading depolarization represents a prime and simultaneously the most neglected pathophysiological process in acute neurology. Aristides Leão postulated as early as the 1940s that the pathophysiological process in neurons underlying migraine aura is of the same nature as the pathophysiological process in neurons that occurs in response to cerebral circulatory arrest, because he assumed that spreading depolarization occurs in both conditions. With this in mind, it is not surprising that patients with migraine with aura have about a twofold increased risk of stroke, as some spreading depolarizations leading to the patient percept of migraine aura could be caused by cerebral ischemia. However, it is in the nature of spreading depolarization that it can have different etiologies and not all spreading depolarizations arise because of ischemia. Spreading depolarization is observed as a negative direct current (DC) shift and associated with different changes in spontaneous brain activity in the alternating current (AC) band of the electrocorticogram. These are non-spreading depression and spreading activity depression and epileptiform activity. The same spreading depolarization wave may be associated with different activity changes in adjacent brain regions. Here, we review the basal mechanism underlying spreading depolarization and the associated activity changes. Using original recordings in animals and patients, we illustrate that the associated changes in spontaneous activity are by no means trivial, but pose unsolved mechanistic puzzles and require proper scientific analysis.

8.
EBioMedicine ; 43: 460-472, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31162113

RESUMO

BACKGROUND: Disease progression and delayed neurological complications are common after aneurysmal subarachnoid hemorrhage (aSAH). We explored the potential of quantitative blood-brain barrier (BBB) imaging to predict disease progression and neurological outcome. METHODS: Data were collected as part of the Co-Operative Studies of Brain Injury Depolarizations (COSBID). We analyzed retrospectively, blinded and semi-automatically magnetic resonance images from 124 aSAH patients scanned at 4 time points (24-48 h, 6-8 days, 12-15 days and 6-12 months) after the initial hemorrhage. Volume of brain with apparent pathology and/or BBB dysfunction (BBBD), subarachnoid space and lateral ventricles were measured. Neurological status on admission was assessed using the World Federation of Neurosurgical Societies and Rosen-Macdonald scores. Outcome at ≥6 months was assessed using the extended Glasgow outcome scale and disease course (progressive or non-progressive based on imaging-detected loss of normal brain tissue in consecutive scans). Logistic regression was used to define biomarkers that best predict outcomes. Receiver operating characteristic analysis was performed to assess accuracy of outcome prediction models. FINDINGS: In the present cohort, 63% of patients had progressive and 37% non-progressive disease course. Progressive course was associated with worse outcome at ≥6 months (sensitivity of 98% and specificity of 97%). Brain volume with BBBD was significantly larger in patients with progressive course already 24-48 h after admission (2.23 (1.23-3.17) folds, median with 95%CI), and persisted at all time points. The highest probability of a BBB-disrupted voxel to become pathological was found at a distance of ≤1 cm from the brain with apparent pathology (0·284 (0·122-0·594), p < 0·001, median with 95%CI). A multivariate logistic regression model revealed power for BBBD in combination with RMS at 24-48 h in predicting outcome (ROC area under the curve = 0·829, p < 0·001). INTERPRETATION: We suggest that early identification of BBBD may serve as a key predictive biomarker for neurological outcome in aSAH. FUND: Dr. Dreier was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (DFG DR 323/5-1 and DFG DR 323/10-1), the Bundesministerium für Bildung und Forschung (BMBF) Center for Stroke Research Berlin 01 EO 0801 and FP7 no 602150 CENTER-TBI. Dr. Friedman was supported by grants from Israel Science Foundation and Canada Institute for Health Research (CIHR). Dr. Friedman was supported by grants from European Union's Seventh Framework Program (FP7/2007-2013; grant #602102).


Assuntos
Barreira Hematoencefálica/metabolismo , Aneurisma Intracraniano/complicações , Hemorragia Subaracnóidea/etiologia , Hemorragia Subaracnóidea/metabolismo , Adulto , Idoso , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Angiografia por Tomografia Computadorizada , Progressão da Doença , Diagnóstico Precoce , Feminino , Escala de Resultado de Glasgow , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Razão de Chances , Avaliação de Resultados da Assistência ao Paciente , Prognóstico , Curva ROC , Reprodutibilidade dos Testes , Hemorragia Subaracnóidea/diagnóstico , Adulto Jovem
9.
BMC Neurol ; 18(1): 210, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563494

RESUMO

BACKGROUND: Cortical ischemic lesions represent the predominant pathomorphological pattern of focal lesions after aneurysmal subarachnoid hemorrhage (aSAH). Autopsy studies suggest that they occur adjacent to subarachnoid blood and are related to spasm of small cortical rather than proximal arteries. Recent clinical monitoring studies showed that cortical spreading depolarizations, which induce cortical arterial spasms, are involved in lesion development. If subarachnoid blood induces adjacent cortical lesions, it would be expected that (i) they also develop after traumatic subarachnoid hemorrhage (tSAH), and (ii) lesions after tSAH can occur in absence of angiographic vasospasm, as was found for aSAH. CASE PRESENTATION: An 86-year-old woman was admitted to our hospital with fluctuating consciousness after hitting her head during a fall. The initial computed tomography (CT) was significant for tSAH in cortical sulci. On day 8, the patient experienced a secondary neurological deterioration with reduced consciousness and global aphasia. Whereas the CT scan on day 9 was still unremarkable, magnetic resonance imaging (MRI) on day 10 revealed new cortical laminar infarcts adjacent to sulcal blood clots. Proximal vasospasm was ruled out using MR and CT angiography and Doppler sonography. CT on day 14 confirmed the delayed infarcts. CONCLUSIONS: We describe a case of delayed cortical infarcts around sulcal blood clots after tSAH in the absence of proximal vasospasm, similar to results found previously for aSAH. As for aSAH, this case suggests that assessment of angiographic vasospasm is not sufficient to screen for risk of delayed infarcts after tSAH. Electrocorticography is suggested as a complementary method to monitor the hypothesized mechanism of spreading depolarizations.


Assuntos
Infarto Cerebral/diagnóstico , Infarto Cerebral/etiologia , Hemorragia Subaracnoídea Traumática/complicações , Idoso de 80 Anos ou mais , Angiografia por Tomografia Computadorizada , Eletrocorticografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Trombose/complicações , Tomografia Computadorizada por Raios X , Vasoespasmo Intracraniano
10.
Brain ; 141(6): 1734-1752, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668855

RESUMO

Spreading depolarizations are characterized by abrupt, near-complete breakdown of the transmembrane ion gradients, neuronal oedema, mitochondrial depolarization, glutamate excitotoxicity and activity loss (depression). Spreading depolarization induces either transient hyperperfusion in normal tissue; or hypoperfusion (inverse coupling = spreading ischaemia) in tissue at risk for progressive injury. The concept of the spreading depolarization continuum is critical since many spreading depolarizations have intermediate characteristics, as opposed to the two extremes of spreading depolarization in either severely ischaemic or normal tissue. In animals, the spreading depolarization extreme in ischaemic tissue is characterized by prolonged depolarization durations, in addition to a slow baseline variation termed the negative ultraslow potential. The negative ultraslow potential is initiated by spreading depolarization and similar to the negative direct current (DC) shift of prolonged spreading depolarization, but specifically refers to a negative potential component during progressive recruitment of neurons into cell death in the wake of spreading depolarization. We here first quantified the spreading depolarization-initiated negative ultraslow potential in the electrocorticographic DC range and the activity depression in the alternate current range after middle cerebral artery occlusion in rats. Relevance of these variables to the injury was supported by significant correlations with the cortical infarct volume and neurological outcome after 72 h of survival. We then identified negative ultraslow potential-containing clusters of spreading depolarizations in 11 patients with aneurysmal subarachnoid haemorrhage. The human platinum/iridium-recorded negative ultraslow potential showed a tent-like shape. Its amplitude of 45.0 (39.0, 69.4) mV [median (first, third quartile)] was 6.6 times larger and its duration of 3.7 (3.3, 5.3) h was 34.9 times longer than the negative DC shift of spreading depolarizations in less compromised tissue. Using Generalized Estimating Equations applied to a logistic regression model, we found that negative ultraslow potential displaying electrodes were significantly more likely to overlie a developing ischaemic lesion (90.0%, 27/30) than those not displaying a negative ultraslow potential (0.0%, 0/20) (P = 0.004). Based on serial neuroimages, the lesions under the electrodes developed within a time window of 72 (56, 134) h. The negative ultraslow potential occurred in this time window in 9/10 patients. It was often preceded by a spreading depolarization cluster with increasingly persistent spreading depressions and progressively prolonged DC shifts and spreading ischaemias. During the negative ultraslow potential, spreading ischaemia lasted for 40.0 (28.0, 76.5) min, cerebral blood flow fell from 57 (53, 65) % to 26 (16, 42) % (n = 4) and tissue partial pressure of oxygen from 12.5 (9.2, 15.2) to 3.3 (2.4, 7.4) mmHg (n = 5). Our data suggest that the negative ultraslow potential is the electrophysiological correlate of infarction in human cerebral cortex and a neuromonitoring-detected medical emergency.awy102media15775596049001.


Assuntos
Infarto Encefálico/patologia , Infarto Encefálico/fisiopatologia , Córtex Cerebral/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Infarto da Artéria Cerebral Média/patologia , Adulto , Animais , Infarto Encefálico/diagnóstico por imagem , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Modelos Animais de Doenças , Eletrocorticografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/fisiopatologia , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
11.
Brain ; 140(10): 2673-2690, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969382

RESUMO

See Ghoshal and Claassen (doi:10.1093/brain/awx226) for a scientific commentary on this article. Early cortical infarcts are common in poor-grade patients after aneurysmal subarachnoid haemorrhage. There are no animal models of these lesions and mechanisms are unknown, although mass cortical spreading depolarizations are hypothesized as a requisite mechanism and clinical marker of infarct development. Here we studied acute sequelae of subarachnoid haemorrhage in the gyrencephalic brain of propofol-anaesthetized juvenile swine using subdural electrode strips (electrocorticography) and intraparenchymal neuromonitoring probes. Subarachnoid infusion of 1­2 ml of fresh blood at 200 µl/min over cortical sulci caused clusters of spreading depolarizations (count range: 12­34) in 7/17 animals in the ipsilateral but not contralateral hemisphere in 6 h of monitoring, without meaningful changes in other variables. Spreading depolarization clusters were associated with formation of sulcal clots (P < 0.01), a high likelihood of adjacent cortical infarcts (5/7 versus 2/10, P < 0.06), and upregulation of cyclooxygenase-2 in ipsilateral cortex remote from clots/infarcts. In a second cohort, infusion of 1 ml of clotted blood into a sulcus caused spreading depolarizations in 5/6 animals (count range: 4­20 in 6 h) and persistent thick clots with patchy or extensive infarction of circumscribed cortex in all animals. Infarcts were significantly larger after blood clot infusion compared to mass effect controls using fibrin clots of equal volume. Haematoxylin and eosin staining of infarcts showed well demarcated zones of oedema and hypoxic-ischaemic neuronal injury, consistent with acute infarction. The association of spreading depolarizations with early brain injury was then investigated in 23 patients [14 female; age (median, quartiles): 57 years (47, 63)] after repair of ruptured anterior communicating artery aneurysms by clip ligation (n = 14) or coiling (n = 9). Frontal electrocorticography [duration: 54 h (34, 66)] from subdural electrode strips was analysed over Days 0­3 after initial haemorrhage and magnetic resonance imaging studies were performed at ∼ 24­48 h after aneurysm treatment. Patients with frontal infarcts only and those with frontal infarcts and/or intracerebral haemorrhage were both significantly more likely to have spreading depolarizations (6/7 and 10/12, respectively) than those without frontal brain lesions (1/11, P's < 0.05). These results suggest that subarachnoid clots in sulci/fissures are sufficient to induce spreading depolarizations and acute infarction in adjacent cortex. We hypothesize that the cellular toxicity and vasoconstrictive effects of depolarizations act in synergy with direct ischaemic effects of haemorrhage as mechanisms of infarct development. Results further validate spreading depolarizations as a clinical marker of early brain injury and establish a clinically relevant model to investigate causal pathologic sequences and potential therapeutic interventions.


Assuntos
Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/fisiopatologia , Adulto , Idoso , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Eletrocorticografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Suínos , Adulto Jovem
12.
J Cereb Blood Flow Metab ; 37(5): 1595-1625, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27317657

RESUMO

Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches.


Assuntos
Lesões Encefálicas/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Cuidados Críticos/métodos , Substância Cinzenta/fisiopatologia , Monitorização Neurofisiológica/métodos , Acidente Vascular Cerebral/fisiopatologia , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/terapia , Circulação Cerebrovascular , Eletrocorticografia , Humanos , Guias de Prática Clínica como Assunto , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...