Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 16(11): 2185-2192, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34515462

RESUMO

Bromodomain-containing proteins frequently reside in multisubunit chromatin complexes with tissue or cell state-specific compositions. Recent studies have revealed tumor-specific dependencies on the BAF complex bromodomain subunit BRD9 that are a result of recurrent mutations afflicting the structure and composition of associated complex members. To enable the study of ligand engaged complex assemblies, we established a chemoproteomics approach using a functionalized derivative of the BRD9 ligand BI-9564 as an affinity matrix. Unexpectedly, in addition to known interactions with BRD9 and associated BAF complex proteins, we identify a previously unreported interaction with members of the NuA4 complex through the bromodomain-containing subunit BRD8. We apply this finding, alongside a homology-model-guided design, to develop chemical biology approaches for the study of BRD8 inhibition and to arrive at first-in-class selective and cellularly active probes for BRD8. These tools will empower further pharmacological studies of BRD9 and BRD8 within respective BAF and NuA4 complexes.


Assuntos
Benzilaminas/farmacologia , Naftiridinas/farmacologia , Proteômica/métodos , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Reparo do DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Subunidades Proteicas , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcriptoma
2.
Nat Chem Biol ; 15(7): 666-668, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209353

RESUMO

The complement pathway is an important part of the immune system, and uncontrolled activation is implicated in many diseases. The human complement component 5 protein (C5) is a validated drug target within the complement pathway, as an anti-C5 antibody (Soliris) is an approved therapy for paroxysmal nocturnal hemoglobinuria. Here, we report the identification, optimization and mechanism of action for the first small-molecule inhibitor of C5 complement protein.


Assuntos
Complemento C5/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Complemento C5/metabolismo , Humanos , Conformação Molecular , Bibliotecas de Moléculas Pequenas/química
3.
Proc Natl Acad Sci U S A ; 116(21): 10360-10365, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31072929

RESUMO

Lipoprotein lipase (LPL) plays a central role in triglyceride (TG) metabolism. By catalyzing the hydrolysis of TGs present in TG-rich lipoproteins (TRLs), LPL facilitates TG utilization and regulates circulating TG and TRL concentrations. Until very recently, structural information for LPL was limited to homology models, presumably due to the propensity of LPL to unfold and aggregate. By coexpressing LPL with a soluble variant of its accessory protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) and with its chaperone protein lipase maturation factor 1 (LMF1), we obtained a stable and homogenous LPL/GPIHBP1 complex that was suitable for structure determination. We report here X-ray crystal structures of human LPL in complex with human GPIHBP1 at 2.5-3.0 Å resolution, including a structure with a novel inhibitor bound to LPL. Binding of the inhibitor resulted in ordering of the LPL lid and lipid-binding regions and thus enabled determination of the first crystal structure of LPL that includes these important regions of the protein. It was assumed for many years that LPL was only active as a homodimer. The structures and additional biochemical data reported here are consistent with a new report that LPL, in complex with GPIHBP1, can be active as a monomeric 1:1 complex. The crystal structures illuminate the structural basis for LPL-mediated TRL lipolysis as well as LPL stabilization and transport by GPIHBP1.


Assuntos
Lipase Lipoproteica/química , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/metabolismo , Células HEK293 , Humanos , Hidrólise , Metabolismo dos Lipídeos/fisiologia , Lipólise/fisiologia , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo
4.
Proc Natl Acad Sci U S A ; 103(8): 2788-93, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16477002

RESUMO

IL-2 is a cytokine that functions as a growth factor and central regulator in the immune system and mediates its effects through ligand-induced hetero-trimerization of the receptor subunits IL-2R alpha, IL-2R beta, and gamma(c). Here, we describe the crystal structure of the trimeric assembly of the human IL-2 receptor ectodomains in complex with IL-2 at 3.0 A resolution. The quaternary structure is consistent with a stepwise assembly from IL-2/IL-2R alpha to IL-2/IL-2R alpha/IL-2R beta to IL-2/IL-2R alpha/IL-2R beta/gamma(c). The IL-2R alpha subunit forms the largest of the three IL-2/IL-2R interfaces, which, together with the high abundance of charge-charge interactions, correlates well with the rapid association rate and high-affinity interaction of IL-2R alpha with IL-2 at the cell surface. Surprisingly, IL-2R alpha makes no contacts with IL-2R beta or gamma(c), and only minor changes are observed in the IL-2 structure in response to receptor binding. These findings support the principal role of IL-2R alpha to deliver IL-2 to the signaling complex and act as regulator of signal transduction. Cooperativity in assembly of the final quaternary complex is easily explained by the extraordinarily extensive set of interfaces found within the fully assembled IL-2 signaling complex, which nearly span the entire length of the IL-2R beta and gamma(c) subunits. Helix A of IL-2 wedges tightly between IL-2R beta and gamma(c) to form a three-way junction that coalesces into a composite binding site for the final gamma(c) recruitment. The IL-2/gamma(c) interface itself exhibits the smallest buried surface and the fewest hydrogen bonds in the complex, which is consistent with its promiscuous use in other cytokine receptor complexes.


Assuntos
Interleucina-2/química , Receptores de Interleucina-2/química , Cristalografia , Humanos , Estrutura Quaternária de Proteína , Transdução de Sinais
5.
J Biol Chem ; 279(17): 18034-45, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-14966129

RESUMO

Aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/IMP cyclohydrolase (ATIC) is a bifunctional enzyme with folate-dependent AICAR transformylase and IMP cyclohydrolase activities that catalyzes the last two steps of purine biosynthesis. The AICAR transformylase inhibitors BW1540 and BW2315 are sulfamido-bridged 5,8-dideazafolate analogs with remarkably potent K(i) values of 8 and 6 nm, respectively, compared with most other antifolates. Crystal structures of ATIC at 2.55 and 2.60 A with each inhibitor, in the presence of substrate AICAR, revealed that the sulfonyl groups dominate inhibitor binding and orientation through interaction with the proposed oxyanion hole. These agents then appear to mimic the anionic transition state and now implicate Asn(431') in the reaction mechanism along with previously identified key catalytic residues Lys(266) and His(267). Potent and selective inhibition of the AICAR transformylase active site, compared with other folate-dependent enzymes, should therefore be pursued by further design of sulfonyl-containing antifolates.


Assuntos
Hidroximetil e Formil Transferases/química , Complexos Multienzimáticos/química , Nucleotídeo Desaminases/química , Sequência de Aminoácidos , Ânions , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Elétrons , Inibidores Enzimáticos/farmacologia , Humanos , Ligação de Hidrogênio , Cinética , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfonamidas/farmacologia , Tetra-Hidrofolatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...