Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 30(12): 1680-1691.e6, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37898120

RESUMO

Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ∼5-fold more effective than the canonical nitroreductase NfsB.


Assuntos
Metronidazol , Peixe-Zebra , Animais , Metronidazol/farmacologia , Metronidazol/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Metagenoma , Clonagem Molecular , Nitrorredutases/genética
2.
Circ Genom Precis Med ; 16(5): 421-430, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37671549

RESUMO

BACKGROUND: Variants in the DMD gene, that encodes the cytoskeletal protein, dystrophin, cause a severe form of dilated cardiomyopathy (DCM) associated with high rates of heart failure, heart transplantation, and ventricular arrhythmias. Improved early detection of individuals at risk is needed. METHODS: Genetic testing of 40 male probands with a potential X-linked genetic cause of primary DCM was undertaken using multi-gene panel sequencing, multiplex polymerase chain reaction, and array comparative genomic hybridization. Variant location was assessed with respect to dystrophin isoform patterns and exon usage. Telomere length was evaluated as a marker of myocardial dysfunction in left ventricular tissue and blood. RESULTS: Four pathogenic/likely pathogenic DMD variants were found in 5 probands (5/40: 12.5%). Only one rare variant was identified by gene panel testing with 3 additional multi-exon deletion/duplications found following targeted assays for structural variants. All of the pathogenic/likely pathogenic DMD variants involved dystrophin exons that had percent spliced-in scores >90, indicating high levels of constitutive expression in the human adult heart. Fifteen DMD variant-negative probands (15/40: 37.5%) had variants in autosomal genes including TTN, BAG3, LMNA, and RBM20. Myocardial telomere length was reduced in patients with DCM irrespective of genotype. No differences in blood telomere length were observed between genotype-positive family members with/without DCM and controls. CONCLUSIONS: Primary genetic testing using multi-gene panels has a low yield and specific assays for structural variants are required if DMD-associated cardiomyopathy is suspected. Distinguishing X-linked causes of DCM from autosomal genes that show sex differences in clinical presentation is crucial for informed family management.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Distrofina , Adulto , Humanos , Masculino , Feminino , Distrofina/genética , Hibridização Genômica Comparativa , Linhagem , Genótipo , Fenótipo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética
3.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993673

RESUMO

Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ~5-fold more effective than the canonical nitroreductase NfsB.

4.
Genet Med ; 21(3): 650-662, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29961767

RESUMO

PURPOSE: We evaluated genome sequencing (GS) as an alternative to multigene panel sequencing (PS) for genetic testing in dilated cardiomyopathy (DCM). METHODS: Forty-two patients with familial DCM underwent PS and GS, and detection rates of rare single-nucleotide variants and small insertions/deletions in panel genes were compared. Loss-of-function variants in 406 cardiac-enriched genes were evaluated, and an assessment of structural variation was performed. RESULTS: GS provided broader and more uniform coverage than PS, with high concordance for rare variant detection in panel genes. GS identified all PS-identified pathogenic or likely pathogenic variants as well as two additional likely pathogenic variants: one was missed by PS due to low coverage, the other was a known disease-causing variant in a gene not included on the panel. No loss-of-function variants in the extended gene set met clinical criteria for pathogenicity. One BAG3 structural variant was classified as pathogenic. CONCLUSION: Our data support the use of GS for genetic testing in DCM, with high variant detection accuracy and a capacity to identify structural variants. GS provides an opportunity to go beyond suites of established disease genes, but the incremental yield of clinically actionable variants is limited by a paucity of genetic and functional evidence for DCM association.


Assuntos
Cardiomiopatia Dilatada/genética , Testes Genéticos/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Feminino , Predisposição Genética para Doença/genética , Humanos , Mutação INDEL , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos
5.
Genet Med ; 21(1): 133-143, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29892087

RESUMO

PURPOSE: We evaluated strategies for identifying disease-causing variants in genetic testing for dilated cardiomyopathy (DCM). METHODS: Cardiomyopathy gene panel testing was performed in 532 DCM patients and 527 healthy control subjects. Rare variants in 41 genes were stratified using variant-level and gene-level characteristics. RESULTS: A majority of DCM cases and controls carried rare protein-altering cardiomyopathy gene variants. Variant-level characteristics alone had limited discriminative value. Differentiation between groups was substantially improved by addition of gene-level information that incorporated ranking of genes based on literature evidence for disease association. The odds of DCM were increased to nearly 9-fold for truncating variants or high-impact missense variants in the subset of 14 genes that had the strongest biological links to DCM (P <0.0001). For some of these genes, DCM-associated variants appeared to be clustered in key protein functional domains. Multiple rare variants were present in many family probands, however, there was generally only one "driver" pathogenic variant that cosegregated with disease. CONCLUSION: Rare variants in cardiomyopathy genes can be effectively stratified by combining variant-level and gene-level information. Prioritization of genes based on their a priori likelihood of disease causation is a key factor in identifying clinically actionable variants in cardiac genetic testing.


Assuntos
Cardiomiopatia Dilatada/genética , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Raras/genética , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/patologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Doenças Raras/diagnóstico , Doenças Raras/patologia
7.
Circ Genom Precis Med ; 11(8): e002135, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30354343

RESUMO

Background Truncating variants in the TTN gene ( TTNtv) are common in patients with dilated cardiomyopathy (DCM) but also occur in the general population. Whether TTNtv are sufficient to cause DCM or require a second hit for DCM manifestation is an important clinical issue. Methods We generated a zebrafish model of an A-band TTNtv identified in 2 human DCM families in which early-onset disease appeared to be precipitated by ventricular volume overload. Cardiac phenotypes were serially assessed from 0 to 12 months using video microscopy, high-frequency echocardiography, and histopathologic analysis. The effects of sustained hemodynamic stress resulting from an anemia-induced hyperdynamic state were also evaluated. Results Homozygous ttna mutants had severe cardiac dysmorphogenesis and premature death, whereas heterozygous mutants ( ttnatv/+) survived into adulthood and spontaneously developed DCM. Six-month-old ttnatv/+ fish had reduced baseline ventricular systolic function and failed to mount a hypercontractile response when challenged by hemodynamic stress. Pulsed wave and tissue Doppler analysis also revealed unsuspected ventricular diastolic dysfunction in ttnatv/+ fish with prolonged isovolumic relaxation and increased diastolic passive stiffness in the absence of myocardial fibrosis. These defects reduced diastolic reserve under stress conditions and resulted in disproportionately greater atrial dilation than observed in wild-type fish. Conclusions Heterozygosity for A-band titin truncation is sufficient to cause DCM in adult zebrafish. Abnormalities of systolic and diastolic reserve in titin-truncated fish reduce stress tolerance and may contribute to a substrate for atrial arrhythmogenesis. These data suggest that hemodynamic stress may be an important modifiable risk factor in human TTNtv-related DCM.


Assuntos
Cardiomiopatia Dilatada/genética , Conectina/genética , Hemodinâmica/genética , Estresse Fisiológico/genética , Adaptação Biológica/genética , Adolescente , Adulto , Idoso , Animais , Animais Geneticamente Modificados , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Embrião não Mamífero , Feminino , Estudos de Associação Genética , Coração/embriologia , Coração/crescimento & desenvolvimento , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Sarcômeros/patologia , Deleção de Sequência , Volume Sistólico/genética , Adulto Jovem , Peixe-Zebra
8.
J Mol Cell Cardiol ; 97: 24-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27103460

RESUMO

The two-pore domain potassium (K(+)) channel TWIK-1 (or K2P1.1) contributes to background K(+) conductance in diverse cell types. TWIK-1, encoded by the KCNK1 gene, is present in the human heart with robust expression in the atria, however its physiological significance is unknown. To evaluate the cardiac effects of TWIK-1 deficiency, we studied zebrafish embryos after knockdown of the two KCNK1 orthologues, kcnk1a and kcnk1b. Knockdown of kcnk1a or kcnk1b individually caused bradycardia and atrial dilation (p<0.001 vs. controls), while ventricular stroke volume was preserved. Combined knockdown of both kcnk1a and kcnk1b resulted in a more severe phenotype, which was partially reversed by co-injection of wild-type human KCNK1 mRNA, but not by a dominant negative variant of human KCNK1 mRNA. To determine whether genetic variants in KCNK1 might cause atrial fibrillation (AF), we sequenced protein-coding regions in two independent cohorts of patients (373 subjects) and identified three non-synonymous variants, p.R171H, p.I198M and p.G236S, that were all located in highly conserved amino acid residues. In transfected mammalian cells, zebrafish and wild-type human TWIK-1 channels had a similar cellular distribution with predominant localization in the endosomal compartment. Two-electrode voltage-clamp experiments using Xenopus oocytes showed that both zebrafish and wild-type human TWIK-1 channels produced K(+) currents that are sensitive to external K(+) concentration as well as acidic pH. There were no effects of the three KCNK1 variants on cellular localization, current amplitude or reversal potential at pH7.4 or pH6. Our data indicate that TWIK-1 has a highly conserved role in cardiac function and is required for normal heart rate and atrial morphology. Despite the functional importance of TWIK-1 in the atrium, genetic variation in KCNK1 is not a common primary cause of human AF.


Assuntos
Remodelamento Atrial/genética , Estudos de Associação Genética , Átrios do Coração/metabolismo , Frequência Cardíaca/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Adulto , Idoso , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Feminino , Expressão Gênica , Técnicas de Inativação de Genes , Variação Genética , Átrios do Coração/anatomia & histologia , Átrios do Coração/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Canais de Potássio de Domínios Poros em Tandem/deficiência , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Transporte Proteico , Fatores de Risco , Peixe-Zebra
9.
Biochem Pharmacol ; 85(8): 1091-103, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399641

RESUMO

Two potentially complementary approaches to improve the anti-cancer strategy gene-directed enzyme prodrug therapy (GDEPT) are discovery of more efficient prodrug-activating enzymes, and development of more effective prodrugs. Here we demonstrate the utility of a flexible screening system based on the Escherichia coli SOS response to evaluate novel nitroreductase enzymes and prodrugs in concert. To achieve this, a library of 47 candidate genes representing 11 different oxidoreductase families was created and screened to identify the most efficient activators of two different nitroaromatic prodrugs, CB1954 and PR-104A. The most catalytically efficient nitroreductases were found in the NfsA and NfsB enzyme families, with NfsA homologues generally more active than NfsB. Some members of the AzoR, NemA and MdaB families also exhibited low-level activity with one or both prodrugs. The results of SOS screening in our optimised E. coli reporter strain SOS-R2 were generally predictive of the ability of nitroreductase candidates to sensitise E. coli to CB1954, and of the kcat/Km for each prodrug substrate at a purified protein level. However, we also found that not all nitroreductases express stably in human (HCT-116 colon carcinoma) cells, and that activity at a purified protein level did not necessarily predict activity in stably transfected HCT-116. These results highlight a need for all enzyme-prodrug partners for GDEPT to be assessed in the specific context of the vector and cell line that they are intended to target. Nonetheless, our oxidoreductase library and optimised screens provide valuable tools to identify preferred nitroreductase-prodrug combinations to advance to preclinical evaluation.


Assuntos
Antineoplásicos/metabolismo , Aziridinas/metabolismo , Escherichia coli/enzimologia , Biblioteca Gênica , Terapia Genética , Compostos de Mostarda Nitrogenada/metabolismo , Nitrorredutases/genética , Pró-Fármacos/metabolismo , Células HCT116 , Humanos , Nitrorredutases/isolamento & purificação , Resposta SOS em Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...