Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 27(11): 302, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36472101

RESUMO

BACKGROUND: Infections, major surgeries, and hyperinflammatory syndromes are known to trigger Systemic Inflammatory Response Syndrome (SIRS). Discrimination between infectious and noninfectious inflammation often poses a challenge in chronically ill patients with multiple comorbidities. These patients are routinely treated with a variety of anti-infective medications before a pathogen is identified. With the goal of improving pathogen detection rates and interventions, we evaluated Next Generation Sequencing (NGS) as a highly sensitive and fast means of detecting free microbial DNA in a small amount of serum samples from children with ongoing SIRS. METHODS: We describe seven complex pediatric patients of SIRS or prolonged fever (>38.5 °C) >72 hours in which serum samples analyzed by NGS had a major impact on therapy. One patient was analyzed twice. RESULTS: In eight NGS there were six positive results (two bacterial, three viral, one fungal) which were subsequently confirmed by microbiological culture or polymerase chain reaction (PCR) in five of the six NGS. In five of the eight performed NGS, results led to a change of therapy: antibiotic therapy was discontinued in two, escalated in one, an initiated in another; in one an antiviral was administered. CONCLUSIONS: NGS may become a valuable addition to infectious disease diagnostics in cases of pediatric SIRS. However, NGS has not yet been validated as a diagnostic method in pediatric as a diagnostic method in pediatric patients and results should therefore be interpreted with caution. Multi-center NGS evaluation studies are currently being planned.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Síndrome de Resposta Inflamatória Sistêmica , Humanos , Criança , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Estado Terminal , Análise de Sequência de DNA , DNA
2.
PLoS Genet ; 16(12): e1009282, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33378356

RESUMO

The stringent response is characterized by the synthesis of the messenger molecules pppGpp, ppGpp or pGpp (here collectively designated (pp)pGpp). The phenotypic consequences resulting from (pp)pGpp accumulation vary among species and can be mediated by different underlying mechanisms. Most genome-wide analyses have been performed under stress conditions, which often mask the immediate effects of (pp)pGpp-mediated regulatory circuits. In Staphylococcus aureus, (pp)pGpp can be synthesized via the RelA-SpoT-homolog, RelSau upon amino acid limitation or via one of the two small (pp)pGpp synthetases RelP or RelQ upon cell wall stress. We used RNA-Seq to compare the global effects in response to induction of the synthetase of rel-Syn (coding for the enzymatic region of RelSau) or relQ without the need to apply additional stress conditions. Induction of rel-Syn resulted in changes in the nucleotide pool similar to induction of the stringent response via the tRNA synthetase inhibitor mupirocin: a reduction in the GTP pool, an increase in the ATP pool and synthesis of pppGpp, ppGpp and pGpp. Induction of all three enzymes resulted in similar changes in the transcriptome. However, RelQ was less active than Rel-Syn and RelP, indicating strong restriction of its (pp)pGpp-synthesis activity in vivo. (pp)pGpp induction resulted in the downregulation of many genes involved in protein and RNA/DNA metabolism. Many of the (pp)pGpp upregulated genes are part of the GTP sensitive CodY regulon and thus likely regulated through lowering of the GTP pool. New CodY independent transcriptional changes were detected including genes involved in the SOS response, iron storage (e.g. ftnA, dps), oxidative stress response (e.g., perR, katA, sodA) and the psmα1-4 and psmß1-2 operons coding for cytotoxic, phenol soluble modulins (PSMs). Analyses of the ftnA, dps and psm genes in different regulatory mutants revealed that their (pp)pGpp-dependent regulation can occur independent of the regulators PerR, Fur, SarA or CodY. Moreover, psm expression is uncoupled from expression of the quorum sensing system Agr, the main known psm activator. The expression of central genes of the oxidative stress response protects the bacteria from anticipated ROS stress derived from PSMs or exogenous sources. Thus, we identified a new link between the stringent response and oxidative stress in S. aureus that is likely crucial for survival upon phagocytosis.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Ligases/genética , Staphylococcus aureus/genética , Estresse Fisiológico , Proteínas de Bactérias/metabolismo , Ligases/metabolismo , Staphylococcus aureus/metabolismo
3.
Free Radic Biol Med ; 161: 351-364, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33144262

RESUMO

Slow growing stationary phase bacteria are often tolerant to multiple stressors and antimicrobials. Here, we show that the pathogen Staphylococcus aureus develops a non-specific tolerance towards oxidative stress during the stationary phase, which is mediated by the nucleotide second messenger (p)ppGpp. The (p)ppGpp0 mutant was highly susceptible to HOCl stress during the stationary phase. Transcriptome analysis of the (p)ppGpp0 mutant revealed an increased expression of the PerR, SigB, QsrR, CtsR and HrcA regulons during the stationary phase, indicating an oxidative stress response. The (p)ppGpp0 mutant showed a slight oxidative shift in the bacillithiol (BSH) redox potential (EBSH) and an impaired H2O2 detoxification due to higher endogenous ROS levels. The increased ROS levels in the (p)ppGpp0 mutant were shown to be caused by higher respiratory chain activity and elevated total and free iron levels. Consistent with these results, N-acetyl cysteine and the iron-chelator dipyridyl improved the growth and survival of the (p)ppGpp0 mutant under oxidative stress. Elevated free iron levels caused 8 to 31-fold increased transcription of Fe-storage proteins ferritin (ftnA) and miniferritin (dps) in the (p)ppGpp0 mutant, while Fur-regulated uptake systems for iron, heme or siderophores (efeOBU, isdABCDEFG, sirABC and sstADBCD) were repressed. Finally, the susceptibility of the (p)ppGpp0 mutant towards the bactericidal action of the antibiotics ciprofloxacin and tetracycline was abrogated with N-acetyl cysteine and dipyridyl. Taken together, (p)ppGpp confers tolerance to ROS and antibiotics by down-regulation of respiratory chain activity and free iron levels, lowering ROS formation to ensure redox homeostasis in S. aureus.


Assuntos
Guanosina Pentafosfato , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase , Peróxido de Hidrogênio , Ferro/metabolismo , Oxirredução , Estresse Oxidativo , Staphylococcus aureus/metabolismo
4.
PLoS Genet ; 14(7): e1007514, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29985927

RESUMO

The stringent response is characterized by (p)ppGpp synthesis resulting in repression of translation and reprogramming of the transcriptome. In Staphylococcus aureus, (p)ppGpp is synthesized by the long RSH (RelA/SpoT homolog) enzyme, RelSau or by one of the two short synthetases (RelP, RelQ). RSH enzymes are characterized by an N-terminal enzymatic domain bearing distinct motifs for (p)ppGpp synthetase or hydrolase activity and a C-terminal regulatory domain (CTD) containing conserved motifs (TGS, DC and ACT). The intramolecular switch between synthetase and hydrolase activity of RelSau is crucial for the adaption of S. aureus to stress (stringent) or non-stress (relaxed) conditions. We elucidated the role of the CTD in the enzymatic activities of RelSau. Growth pattern, transcriptional analyses and in vitro assays yielded the following results: i) in vivo, under relaxed conditions, as well as in vitro, the CTD inhibits synthetase activity but is not required for hydrolase activity; ii) under stringent conditions, the CTD is essential for (p)ppGpp synthesis; iii) RelSau lacking the CTD exhibits net hydrolase activity when expressed in S. aureus but net (p)ppGpp synthetase activity when expressed in E. coli; iv) the TGS and DC motifs within the CTD are required for correct stringent response, whereas the ACT motif is dispensable, v) Co-immunoprecipitation indicated that the CTD interacts with the ribosome, which is largely dependent on the TGS motif. In conclusion, RelSau primarily exists in a synthetase-OFF/hydrolase-ON state, the TGS motif within the CTD is required to activate (p)ppGpp synthesis under stringent conditions.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Hidrolases/genética , Ligases/genética , Staphylococcus aureus/fisiologia , Adaptação Fisiológica/genética , Motivos de Aminoácidos/fisiologia , Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Ligases/metabolismo , Ribossomos/metabolismo , Estresse Fisiológico/fisiologia
5.
Sci Rep ; 8(1): 2195, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391580

RESUMO

The nutritional alarmones ppGpp and pppGpp (collectively: (p)ppGpp) are nucleotide-based second messengers enabling bacteria to respond to environmental and stress conditions. Several bacterial species contain two highly homologous (p)ppGpp synthetases named RelP (SAS2, YwaC) and RelQ (SAS1, YjbM). It is established that RelQ forms homotetramers that are subject to positive allosteric regulation by pppGpp, but structural and mechanistic insights into RelP lack behind. Here we present a structural and mechanistic characterization of RelP. In stark contrast to RelQ, RelP is not allosterically regulated by pppGpp and displays a different enzyme kinetic behavior. This discrepancy is evoked by different conformational properties of the guanosine-substrate binding site (G-Loop) of both proteins. Our study shows how minor structural divergences between close homologues result in new functional features during the course of molecular evolution.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/metabolismo , Ligases/química , Ligases/metabolismo , Regulação Alostérica , Sítios de Ligação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...