Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(22): 226503, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101342

RESUMO

Our measurements of ^{125}Te NMR relaxations reveal an enhancement of electronic spin fluctuations above µ_{0}H^{*}∼15 T, leading to their divergence in the vicinity of the metamagnetic transition at µ_{0}H_{m}≈35 T, below which field-reinforced superconductivity appears when a magnetic field (H) is applied along the crystallographic b axis. The NMR data evidence that these fluctuations are dominantly longitudinal, providing a key to understanding the peculiar superconducting phase diagram in H∥b, where such fluctuations enhance the pairing interactions.

2.
J Phys Condens Matter ; 32(24): 245601, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32189642

RESUMO

We report 105Pd nuclear magnetic resonance (NMR) and nuclear quadrupolar resonance (NQR) measurements on a single crystal of Ce3Pd20Si6, where antiferroquadrupolar and antiferromagnetic orders develop at low temperature. From the analysis of NQR and NMR spectra, we have determined the electric field gradient (EFG) tensors and the anisotropic Knight shift (K) components for both inequivalent Pd sites-Pd(32f) and Pd(48h). The observed EFG values are in excellent agreement with our state-of-the-art density functional theory calculations. The principal values of the quadrupolar coupling are [Formula: see text] MHz and [Formula: see text] MHz, for the Pd(32f) and Pd(48h) sites, respectively, which is large compared to the Larmor frequency defined by the gyromagnetic constant [Formula: see text] MHz/T for 105Pd. Therefore, the complete knowledge of K and the EFG tensors is crucial to establish the correspondence between NMR spectra and crystallographic sites, which is needed for a complete analysis of the magnetic structure, static spin susceptibility, and the spin-lattice relaxation rate data and a better understanding of the groundstate of Ce3Pd20Si6.

3.
Phys Rev Lett ; 121(17): 177202, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411922

RESUMO

The coupled spin-1 chains material NiCl_{2}-4SC(NH_{2})_{2} (DTN) doped with Br impurities is expected to be a perfect candidate for observing many-body localization at high magnetic field: the so-called "Bose glass," a zero-temperature bosonic fluid, compressible, gapless, incoherent, and short-range correlated. Using nuclear magnetic resonance, we critically address the stability of the Bose glass in doped DTN, and find that it hosts a novel disorder-induced ordered state of matter, where many-body physics leads to an unexpected resurgence of quantum coherence emerging from localized impurity states. An experimental phase diagram of this new "order-from-disorder" phase, established from nuclear magnetic resonance T_{1}^{-1} relaxation rate data in the 13±1% Br-doped DTN, is found to be in excellent agreement with the theoretical prediction from large-scale quantum Monte Carlo simulations.

4.
Phys Rev Lett ; 118(24): 247201, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665634

RESUMO

We report a ^{51}V nuclear magnetic resonance investigation of the frustrated spin-1/2 chain compound LiCuVO_{4}, performed in pulsed magnetic fields and focused on high-field phases up to 56 T. For the crystal orientations H∥c and H∥b, we find a narrow field region just below the magnetic saturation where the local magnetization remains uniform and homogeneous, while its value is field dependent. This behavior is the first microscopic signature of the spin-nematic state, breaking spin-rotation symmetry without generating any transverse dipolar order, and is consistent with theoretical predictions for the LiCuVO_{4} compound.

5.
Phys Rev Lett ; 118(16): 167206, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474926

RESUMO

We report a novel crossover behavior in the long-range-ordered phase of a prototypical spin-1/2 Heisenberg antiferromagnetic ladder compound (C_{7}H_{10}N)_{2}CuBr_{4}. The staggered order was previously evidenced from a continuous and symmetric splitting of ^{14}N NMR spectral lines on lowering the temperature below T_{c}≃330 mK, with a saturation towards ≃150 mK. Unexpectedly, the split lines begin to further separate away below T^{*}∼100 mK, while the linewidth and the line shape remain completely invariable. This crossover behavior is further corroborated by the NMR relaxation rate T_{1}^{-1} measurements. A very strong suppression reflecting the ordering, T_{1}^{-1}∼T^{5.5}, observed above T^{*}, is replaced by T_{1}^{-1}∼T below T^{*}. These original NMR features are indicative of the unconventional nature of the crossover, which may arise from a unique arrangement of the ladders into a spatially anisotropic and frustrated coupling network.

6.
Phys Rev Lett ; 118(1): 017001, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28106424

RESUMO

We report the NMR observation of a skewed distribution of ^{17}O Knight shifts when a magnetic field quenches superconductivity and induces long-range charge-density-wave (CDW) order in YBa_{2}Cu_{3}O_{y}. This distribution is explained by an inhomogeneous pattern of the local density of states N(E_{F}) arising from quasiparticle scattering off, yet unidentified, defects in the CDW state. We argue that the effect is most likely related to the formation of quasiparticle bound states, as is known to occur, under specific circumstances, in some metals and superconductors (but not in the CDW state, in general, except for very few cases in 1D materials). These observations should provide insight into the microscopic nature of the CDW, especially regarding the reconstructed band structure and the sensitivity to disorder.

7.
Phys Rev Lett ; 117(10): 106402, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27636483

RESUMO

We present a direct NMR method to determine whether the interactions in a Tomonaga-Luttinger liquid (TLL) state of a spin-1/2 Heisenberg antiferromagnetic ladder are attractive or repulsive. For the strong-leg spin ladder compound (C_{7}H_{10}N)_{2}CuBr_{4} we find that the isothermal magnetic field dependence of the NMR relaxation rate T_{1}^{-1}(H) displays a concave curve between the two critical fields bounding the TLL regime. This is in sharp contrast to the convex curve previously reported for a strong-rung ladder, (C_{5}H_{12}N)_{2}CuBr_{4}. We show that the concavity and the convexity of T_{1}^{-1}(H), which is a fingerprint of spin fluctuations, directly reflect the attractive and repulsive fermionic interactions in the TLL, respectively. The interaction sign is alternatively determined from an indirect method combining bulk magnetization and specific heat data.

8.
Phys Rev Lett ; 114(22): 227202, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26196641

RESUMO

We have synthesized high-quality single crystals of volborthite, a seemingly distorted kagome antiferromagnet, and carried out high-field magnetization measurements up to 74 T and ^{51}V NMR measurements up to 30 T. An extremely wide 1/3 magnetization plateau appears above 28 T and continues over 74 T at 1.4 K, which has not been observed in previous studies using polycrystalline samples. NMR spectra reveal an incommensurate order (most likely a spin-density wave order) below 22 T and a simple spin structure in the plateau phase. Moreover, a novel intermediate phase is found between 23 and 26 T, where the magnetization varies linearly with magnetic field and the NMR spectra indicate an inhomogeneous distribution of the internal magnetic field. This sequence of phases in volborthite bears a striking similarity to those of frustrated spin chains with a ferromagnetic nearest-neighbor coupling J_{1} competing with an antiferromagnetic next-nearest-neighbor coupling J_{2}.

9.
Phys Rev Lett ; 114(21): 216401, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066447

RESUMO

Our measurements of the ^{59}Co NMR spin-spin relaxation in URh_{0.9}Co_{0.1}Ge reveal a divergence of electronic spin fluctuations in the vicinity of the field-induced quantum critical point at H_{R}≈13 T, around which reentrant superconductivity (RSC) occurs in the ferromagnetic heavy fermion compound URhGe. We map out the strength of spin fluctuations in the (H_{b},H_{c}) plane of magnetic field components and show that critical fluctuations develop in the same limited region near the field H_{R} as that where RSC is observed. This strongly suggests these quantum fluctuations as the pairing glue responsible for the RSC. The fluctuations observed are characteristic of a tricritical point, followed by a phase bifurcation toward quantum critical end points.

10.
Phys Rev Lett ; 110(18): 187201, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683239

RESUMO

Based on high-field (31)P nuclear magnetic resonance experiments and accompanying numerical calculations, it is argued that in the frustrated S=1/2 ladder compound BiCu(2)PO(6) a field-induced soliton lattice develops above a critical field of µ(0)H(c1)=20.96(7) T. Solitons result from the fractionalization of the S=1, bosonlike triplet excitations, which in other quantum antiferromagnets are commonly known to experience Bose-Einstein condensation or to crystallize in a superstructure. Unlike in spin-Peierls systems, these field-induced quantum domain walls do not arise from a state with broken translational symmetry and are triggered exclusively by magnetic frustration. Our model predicts yet another second-order phase transition at H(c2)>H(c1), driven by soliton-soliton interactions, most likely corresponding to the one observed in recent magnetocaloric and other bulk measurements.

11.
Phys Rev Lett ; 110(6): 067210, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23432305

RESUMO

We report on NMR and torque measurements on the frustrated quasi-two-dimensional spin-dimer system SrCu(2)(BO(3))(2) in magnetic fields up to 34 T that reveal a sequence of magnetization plateaus at 1/8, 2/15, 1/6, and 1/4 of the saturation and two incommensurate phases below and above the 1/6 plateau. The magnetic structures determined by NMR involve a stripe order of triplets in all plateaus, suggesting that the incommensurate phases originate from proliferation of domain walls. We propose that the magnetization process of SrCu(2)(BO(3))(2) is best described as an incomplete devil's staircase.

12.
Phys Rev Lett ; 110(24): 247203, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25165957

RESUMO

Using (63,65)Cu nuclear magnetic resonance in magnetic fields up to 30 T, we study the microscopic properties of the 12-site valence-bond-solid ground state in the "pinwheel" kagome compound Rb(2)Cu(3)SnF(12). We find that the ground state is characterized by a strong transverse staggered spin polarization whose temperature and field dependence points to a mixing of the singlet and triplet states. This is further corroborated by the field dependence of the gap Δ(H), which has a level anticrossing with a large minimum gap value of ≈ Δ(0)/2, with no evidence of a phase transition down to 1.5 K. By the exact diagonalization of small clusters, we show that the observed anticrossing is mainly due to staggered tilts of the g tensors defined by the crystal structure and reveal symmetry properties of the low-energy excitation spectrum compatible with the absence of level crossing.

13.
Phys Rev Lett ; 111(10): 106404, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25166688

RESUMO

We present NMR measurements of a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4 under magnetic fields up to 15 T in the temperature range from 1.2 K down to 50 mK. From the splitting of NMR lines, we determine the phase boundary and the order parameter of the low-temperature (three-dimensional) long-range-ordered phase. In the Tomonaga-Luttinger regime above the ordered phase, NMR relaxation reflects characteristic power-law decay of spin correlation functions as 1/T1∝T(1/2K-1), which allows us to determine the interaction parameter K as a function of field. We find that field-dependent K varies within the 1

14.
Phys Rev Lett ; 109(17): 177206, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215221

RESUMO

By means of nuclear spin-lattice relaxation rate T(1)(-1), we follow the spin dynamics as a function of the applied magnetic field in two gapped quasi-one-dimensional quantum antiferromagnets: the anisotropic spin-chain system NiCl(2)-4SC(NH(2))(2) and the spin-ladder system (C(5)H(12)N)(2)CuBr(4). In both systems, spin excitations are confirmed to evolve from magnons in the gapped state to spinons in the gapless Tomonaga-Luttinger-liquid state. In between, T(1)(-1) exhibits a pronounced, continuous variation, which is shown to scale in accordance with quantum criticality. We extract the critical exponent for T(1)(-1), compare it to the theory, and show that this behavior is identical in both studied systems, thus demonstrating the universality of quantum-critical behavior.

15.
Phys Rev Lett ; 104(8): 087001, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366958

RESUMO

We present nuclear magnetic resonance (NMR) measurements on the three distinct In sites of CeCoIn5 with a magnetic field applied in the [100] direction. We identify the microscopic nature of the long range magnetic order (LRO) stabilized at low temperatures in fields above 10.2 T while still in the superconducting (SC) state. We infer that the ordered moment is oriented along the c axis and map its field evolution. The study of the field dependence of the NMR shift for the different In sites indicates that the LRO likely coexists with a modulated SC phase, possibly that predicted by Fulde, Ferrell, Larkin, and Ovchinnikov. Furthermore, we discern a field region dominated by strong spin fluctuations where static LRO is absent and propose a revised phase diagram.

16.
Inorg Chem ; 48(18): 8709-17, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19681621

RESUMO

(91)Zr solid-state NMR spectra of zirconium halides and several fluorozirconates have been obtained at high magnetic fields up to 30 T using both the Hahn-Echo and the Quadrupolar Carr-Purcell-Meiboom-Gill sequences combined with the broadband Variable Offset Cumulative Spectrum technique. For the zirconium halides, the (91)Zr isotropic chemical shift covers a range of about 2000 ppm and shows a good correlation with Pauling's electronegativity and ionic potential of the halogen. For the fluorozirconate samples, in which the Zr atoms exhibit various coordination polyhedra, increasing the Zr coordination number and the mean Zr-F bond length leads to an increased isotropic shielding. In the studied compounds the (91)Zr quadrupolar coupling constants (C(Q)'s) range from 10.6 to 44.7 MHz. For 6-fold coordinated Zr sites, a correlation between C(Q) and the shear strain of the octahedron is observed, and we investigate the relationship between the C(Q) and the distortion of the polyhedron for 8-fold coordinated Zr sites using different distortion criteria.

17.
Phys Rev Lett ; 102(12): 127205, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19392320

RESUMO

High magnetic field (63,65)Cu NMR spectra were used to determine the local spin polarization in the 1/3 magnetization plateau of azurite, Cu3(CO3)(2)(OH)(2), which is a model system for the distorted diamond antiferromagnetic spin-1/2 chain. The spin part of the hyperfine field of the Cu2 (dimer) sites is found to be field independent, negative and strongly anisotropic, corresponding to approximately 10% of fully polarized spin in a d orbital. This is close to the expected configuration of the quantum plateau, where a singlet state is stabilized on the dimer. However, the observed nonzero spin polarization points to some triplet admixture, induced by strong asymmetry of the diamond bonds J1 and J3.

18.
Phys Rev Lett ; 101(13): 137207, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18851492

RESUMO

We present a 14N nuclear magnetic resonance study of a single crystal of CuBr4(C5H12N)2 (BPCB) consisting of weakly coupled spin-1/2 Heisenberg antiferromagnetic ladders. Treating ladders in the gapless phase as Luttinger liquids, we are able to fully account for (i) the magnetic field dependence of the nuclear spin-lattice relaxation rate T1(-1) at 250 mK and for (ii) the phase transition to a 3D ordered phase occurring below 110 mK due to weak interladder exchange coupling. BPCB is thus an excellent model system where the possibility to control Luttinger liquid parameters in a continuous manner is demonstrated and the Luttinger liquid model tested in detail over the whole fermion band.

19.
Phys Rev Lett ; 101(3): 037202, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18764284

RESUMO

We present 11B NMR studies of the 2D frustrated dimer spin system SrCu2(BO3)_{2} in the field range 27-31 T covering the upper phase boundary of the 1/8 magnetization plateau, identified at 28.4 T. Our data provide a clear evidence that above 28.4 T the spin superlattice of the 1/8 plateau is modified but does not melt even though the magnetization increases. Although this is precisely what is expected for a supersolid phase, the microscopic nature of this new phase is much more complex. We discuss the field-temperature phase diagram on the basis of our NMR data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...