Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1307291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38230310

RESUMO

Pharmaceutical effluents primarily enter aquatic environments through the discharge of treated and untreated wastewater from various sources, including hospitals, pharmaceutical manufacturing facilities, and households. Microbes sourced from pharmaceutical effluents such as Pseudomonas spp. pose a significant public health concern because of their high levels of resistance to multiple drugs and extreme multidrug resistance. Therefore, the present study was conducted for the isolation, identification, and molecular characterization of selected isolates from pharmaceutical effluents and also determined their antibiotic sensitivity patterns. From June 2016 to March 2017, a study was conducted on four well-known pharmaceutical companies specializing in antibiotic production in Dhaka and Gazipur. Four wastewater samples were collected from various origins and then brought to the Bacteriology laboratory for microbiological examination. Twelve pure isolates were obtained and characterized through cultural and biochemical tests while molecular identification of Pseudomonas spp. was performed using the 16S rRNA gene sequence. Twelve commercially available antibiotics were used for antibiotic sensitivity tests using Kirby-Bauer disk diffusion methods. We isolated the most predominant isolates, Pseudomonas aeruginosa (41.67%), followed by Bacillus spp. (33.33%) and Staphylococcus spp. (25%) respectively. Among 12 antibiotics, ciprofloxacin is 100% sensitive against P. aeruginosa, while the remaining 11 antibiotics are 100% resistant. Bacillus spp. showed 100% resistance to all antibiotics while 50% sensitive to vancomycin and 100% to chloramphenicol, respectively. Staphylococcus spp. was 100% resistant to all antibiotics. Our research suggested that P. aeruginosa is the reservoir of antibiotic resistance genes and spreads disease to humans from the environment. The findings of this study, i.e., the isolation, identification, and characterization of antibiotic-resistant bacteria from pharmaceutical effluent have highlighted, comprehended, and mitigated the dissemination of antibiotic resistance and opportunistic bacteria.

2.
Bioresour Technol ; 365: 128145, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257521

RESUMO

The production of biohythane, a combination of energy-dense hydrogen and methane, from the anaerobic digestion of low-cost organic wastes has attracted attention as a potential candidate for the transition to a sustainable circular economy. Substantial research has been initiated to upscale the process engineering to establish a hythane-based economy by addressing major challenges associated with the process and product upgrading. This review provides an overview of the feasibility of biohythane production in various anaerobic digestion systems (single-stage, dual-stage) and possible technologies to upgrade biohythane to hydrogen-enriched renewable natural gas. The main goal of this review is to promote research in biohythane production technology by outlining critical needs, including meta-omics and metabolic engineering approaches for the advancements in biohythane production technology.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Fermentação , Hidrogênio/metabolismo , Biocombustíveis
3.
AIMS Microbiol ; 7(4): 471-480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071943

RESUMO

Last cholera epidemic has been recorded in Bangladesh between 1992-1993, while few sporadic localized outbreaks have been reported as recent as 2005. Serotype O1 of Vibrio cholera is considered as the principal causative agent which transmits through contaminated drinking water resulting that epidemic. Therefore, the objective of this research was to isolate V. cholera in 3 different water sources; River, pond and tube-well, in 5 different locations of Gazipur, Bangladesh, and to analyze their antibiogram study. A total of 45 water samples were randomly collected for the isolation and identification of Vibrio spp. Samples are then serially diluted in alkaline peptone water and streak on Thiosulfate Citrate Bile Salt Sucrose-TCBS agar for quantification of V. spp. For V. cholera isolation water samples were first enriched in nutrient broth at 37 °C for 16 hours followed by cultivation in selective media; TCBS agar at 37 °C for 24 hours. Yellow colonies on TCBS agar were screed as V. cholera and was confirmed by analyzing their biochemical characteristics like Catalase, Oxidase, MR, VP, Indole, Sugar fermentation. Following isolation antibiotic sensitivity test was performed on each V. cholera isolates to determine their antibiotic sensitivity profile. The results showed, out of 45 samples 12 contained V. cholera. Tube-well water has significantly lower concentration (log CFU/mL) of V. spp. than river and pond water (P < 0.05). Bacterial concentration doesn't deviate (P > 0.05) significantly in 5 different location the sample was collected from. All the 12 isolates were sensitive to Gentamicin and ciprofloxacin (100%), while Chloramphenicol (91.67%), Sulfamethoxazole (91.67%), Azithromycin (66.67%) showed high sensitivity. Isolates showed marginal sensitivity towards Tetracycline (33.33%), and Cephalexin (16.67%) and 100% resistance against antibiotics like Vancomycin, Penicillin, Erythromycin, and Nalidixic Acid. Based on these data we recommend using tube-well water instead of river and pond water for drinking purposes. Furthermore, we suggest selective use of sensitive antimicrobials listed here for therapeutics of cholera outbreak.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA