Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(43): 9508-9517, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34694810

RESUMO

Mass spectra of n-pentane and n-hexane ionized through femtosecond-laser pulses were measured using a time-of-flight mass spectrometer. Fragment ions ejected with large kinetic energies were identified as side peaks in which a two-body dissociation pathway, C5H12++ → C2H5+ + C3H7+, was identified for n-pentane, and two for n-hexane, C6H14++ → C2H5+ + C4H9+ and C3H7+ + C3H7+, based on momentum matching of the fragments. The two-body dissociation pathways were observed when the polarization direction of the linearly polarized laser light was perpendicular to the molecular axis. However, when the polarization direction was parallel to the molecular axis or the laser light was circularly polarized, these signals were weak or difficult to identify. These results suggest that the two-body dissociation pathways are caused by nonsequential double ionization (NSDI), which begins with ionization from the π-type second highest occupied molecular orbital (HOMO-1) via the laser electric field perpendicular to the molecular axis rather than bonding the σ-type HOMO. Quantum chemical calculations show that the dication has a triplet metastable state with the same formula as the neutral state (i.e., 3[CH3-(CH2)n-CH3]++). Therefore, the relevant two-body dissociation channels open through transition states with the (HOMO)1(HOMO-1)1 electron configuration and the estimated kinetic energy release values correlate with those observed.

2.
Mass Spectrom (Tokyo) ; 7(1): A0071, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30588414

RESUMO

A sheet-like ultraviolet (UV) probe laser is used to investigate the ejection and propagation of ion packets of matrix CHCA, which are produced by matrix-assisted laser desorption and ionization (MALDI). Laser irradiation of the expanding MALDI plume induced photodissociation of the CHCA-related ions, which existed in a sheet-like volume, leading to their absence in their MALDI signal profiles. The MALDI spectra were measured under varying conditions: the temporal delay of the lasers and the distance of the sheet-like probe laser from the MALDI sample surface. It was found that the center of the (CHCA)H+ packets were ejected at 46±11 ns after MALDI laser irradiation, while the (CHCA)2H+ packets were ejected at 64±12 ns, regardless of the magnitude of acceleration static high-voltage in 3.5-5.5 kV. This suggests that (CHCA)2H+ is formed by a proton transfer reaction from (CHCA)H+ to (CHCA)2 in the heated condensed phase and/or near the surface. This study represents the first experimental determination of ion ejection time in the MALDI process, which is also applicable to other species in the MALDI plume.

3.
J Phys Chem A ; 121(1): 31-39, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-27935303

RESUMO

We investigated neutral species in the matrix-assisted laser desorption and ionization (MALDI) plume using femtosecond laser ionization spectrometry with simultaneous measurement of the standard MALDI spectrum of the identical MALDI event induced by pulsed UV laser irradiation. The ratio of neutral species in the plume [A]p/[M]p (A = phenylalanine (Phe) or alanine (Ala), M = 2,5-dihydroxybenzoic acid (DHB)) was confirmed to be the same as that of the sample mixture in the range of [A]0/[M]0 = 4 × 10-4-1, indicating the validity of the widely adopted approximation [A]p/[M]p = [A]0/[M]0 in the reaction quotient of the proton transfer reaction MH+ + A ⇄ M + AH+. An effective parameter representing the extent of thermal equilibrium in the thermal proton transfer model is introduced for the first time. Numerical simulation based on this semiequilibrium model successfully reproduced variations of MALDI signal intensities AH+ and MH+ with two parameters: the fraction of ionized matrix a ≤ 10-5 and an effective temperature T = 1200 and 1100 K for Phe/DHB and Ala/DHB systems, respectively. These values show good agreement with those determined previously by different experimental approaches. The extent of thermal equilibrium was determined to be 95% and 98% for Phe/DHB and Ala/DHB systems, respectively, suggesting that the proton transfer reactions almost proceed to their thermal equilibrium.

4.
J Chem Phys ; 138(16): 164309, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23635140

RESUMO

The Ã(3)A"-X̃(3)Σ(-) electronic transition of the HCCN∕DCCN radical was observed by laser-induced fluorescence spectroscopy. Rotationally resolved excitation spectra were observed for HCCN and DCCN, and effective molecular constants of the upper state were determined. The observed intensities of the rotational lines were anomalous, probably due to a level-dependent non-radiative decay process in the excited state. Fluorescence depletion spectroscopy was applied in order to observe non-fluorescent vibronic levels. A dispersed fluorescence spectrum was also observed to determine the vibrational level structure in the ground electronic state. The observed vibrational structures in the fluorescence depletion and dispersed fluorescence spectra were tentatively assigned based on the results of ab initio calculations.


Assuntos
Nitrilas/química , Radicais Livres/química , Teoria Quântica , Análise Espectral
5.
J Chem Phys ; 136(20): 204309, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22667562

RESUMO

Two-body Coulomb explosion processes of ethane (CH(3)CH(3)) and its isotopomers (CD(3)CD(3) and CH(3)CD(3)) induced by an intense laser field (800 nm, 1.0 × 10(14) W/cm(2)) with three different pulse durations (40 fs, 80 fs, and 120 fs) are investigated by a coincidence momentum imaging method. On the basis of statistical treatment of the coincidence data, the contributions from false coincidence events are estimated and the relative yields of the decomposition pathways are determined with sufficiently small uncertainties. The branching ratios of the two body decomposition pathways of CH(3)CD(3) from which triatomic hydrogen molecular ions (H(3)(+), H(2)D(+), HD(2)(+), D(3)(+)) are ejected show that protons and deuterons within CH(3)CD(3) are scrambled almost statistically prior to the ejection of a triatomic hydrogen molecular ion. The branching ratios were estimated by statistical Rice-Ramsperger-Kassel-Marcus calculations by assuming a transition state with a hindered-rotation of a diatomic hydrogen moiety. The hydrogen scrambling dynamics followed by the two body decomposition processes are discussed also by using the anisotropies in the ejection directions of the fragment ions and the kinetic energy distribution of the two body decomposition pathways.


Assuntos
Etano/química , Hidrogênio/química , Deutério/química , Lasers , Modelos Moleculares
6.
J Phys Chem A ; 116(2): 826-31, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22168206

RESUMO

Ionization and fragmentation of formic acid dimers (HCOOH)(2) and (DCOOD)(2) by irradiation of femtosecond laser pulses (100 fs, 800 nm, ~1 × 10(14) W/cm(2)) were investigated by time-of-flight (TOF) mass spectrometry. In the TOF spectra, we observed fragment ions (HCOOH)H(+), (HCOOH)HCOO(+), and H(3)O(+), which were produced via the dissociative ionization of (HCOOH)(2). In addition, we found that the TOF signals of COO(+), HCOO(+), and HCOOH(+) have small but clear side peaks, indicating fragmentation with large kinetic energy release caused by Coulomb explosion. On the basis of the momentum matching among pairs of the side peaks, a Coulomb explosion pathway of the dimer dication, (HCOOH)(2)(2+) → HCOOH(+) + HCOOH(+), was identified with the total kinetic energy release of 3.6 eV. Quantum chemical calculations for energies of (HCOOH)(2)(2+) were also performed, and the kinetic energy release of the metastable dication was estimated to be 3.40 eV, showing good agreement with the observation. COO(+) and HCOO(+) signals with kinetic energies of 1.4 eV were tentatively assigned to be fragment ions through Coulomb explosion occurring after the elimination of a hydrogen atom or molecule from (HCOOH)(2)(2+). The present observation demonstrated that the formic acid dimer could be doubly ionized prior to hydrogen bond breaking by intense femtosecond laser fields.


Assuntos
Formiatos/química , Lasers , Dimerização , Espectrometria de Massas , Teoria Quântica , Fatores de Tempo
7.
J Chem Phys ; 134(6): 064324, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21322697

RESUMO

We investigated a formation channel of triatomic molecular hydrogen ions from ethane dication induced by irradiation of intense laser fields (800 nm, 100 fs, ∼1 × 10(14) W∕cm(2)) by using time of flight mass spectrometry. Hydrogen ion and molecular hydrogen ion (H,D)(n)(+) (n = 1-3) ejected from ethane dications, produced by double ionization of three types of samples, CH(3)CH(3), CD(3)CD(3), and CH(3)CD(3), were measured. All fragments were found to comprise components with a kinetic energy of ∼3.5 eV originating from a two-body Coulomb explosion of ethane dications. Based on the signal intensities and the anisotropy of the ejection direction with respect to the laser polarization direction, the branching ratios, H(+):D(+) = 66:34, H(2)(+):HD(+):D(2)(+) = 63:6:31, and H(3)(+):H(2)D(+):HD(2)(+):D(3)(+) = 26:31:34:9 for the decomposition of C(2)H(3)D(3)(2+), were determined. The ratio of hydrogen molecules, H(2):HD:D(2) = 31:48:21, was also estimated from the signal intensities of the counter ion C(2)(H,D)(4)(2+). The similarity in the extent of H∕D mixture in (H,D)(3)(+) with that of (H,D)(2) suggests that these two dissociation channels have a common precursor with the C(2)H(4)(2+)...H(2) complex structure, as proposed theoretically in the case of H(3)(+) ejection from allene dication [A. M. Mebel and A. D. Bandrauk, J. Chem. Phys. 129, 224311 (2008)]. In contrast, the (H,D)(2)(+) ejection path with a lower extent of H∕D mixture and a large anisotropy is expected to proceed essentially via a different path with a much rapid decomposition rate. For the Coulomb explosion path of C-C bond breaking, the yield ratios of two channels, CH(3)CD(3)(2+)→ CH(3)(+) + CD(3)(+) and CH(2)D(+) + CHD(2)(+), were 81:19 and 92:8 for the perpendicular and parallel directions, respectively. This indicates that the process occurs at a rapid rate, which is comparable to hydrogen migration through the C-C bond, resulting in smaller anisotropy for the latter channel that needs H∕D exchange.


Assuntos
Etano/química , Hidrogênio/química , Lasers , Cátions/química , Fatores de Tempo
8.
Rapid Commun Mass Spectrom ; 24(5): 679-86, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20155759

RESUMO

The processes of H(3)O(+) production from alcohols (ethanol, 2-propanol, 1-propanol, 2-butanol) and ethers (diethyl ether and ethyl methyl ether), and their deuterium-substituted species, by intense laser fields (800 nm, 100 fs, approximately 1 x 10(14) W/cm) were investigated through time-of-flight (TOF) mass spectrometry. H(3)O(+) formation was observed for all these compounds except for ethyl methyl ether. From the analysis of TOF signals of H((3-n))D(n)O(+) (n = 0, 1, 2, and 3) that have expanding tails with increasing flight time, it has been confirmed that the reaction proceeds through metastable dissociation from the intermediate species C(2)H((5-m))D(m)O(+)(m = 0-5). The common shape of the H((3-n))D(n)O(+) signal profiles contains two major distributions in the time constant, i.e., fast and slow components of <50 ns and approximately 500 ns, respectively. The H((3-n))D(n)O(+) branching ratio is interpreted to be the result of complete scrambling of four hydrogen atoms at the C-C site in C(2)H(4)-OH(+), and partial exchange (18-38%) of a hydrogen atom in the OH group with four other hydrogen atoms within 1 ns prior to H((3-n))D(n)O(+) production. Ab initio calculations for the isomers and transition states of C(2)H(5)O(+) were also performed, and the observed H((3-n))D(n)O(+) production mechanism has been discussed. In addition, a stable isomer having a complex structure and two isomerization pathways were discovered to contribute to the H(3)O(+) formation process.


Assuntos
2-Propanol/química , Éteres/química , Lasers , Oniocompostos/química , Deutério/química , Medição da Troca de Deutério/métodos , Isomerismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
9.
J Chem Phys ; 129(10): 104302, 2008 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19044908

RESUMO

The ejection processes of hydrogen molecular ion H(3)(+) from 12 kinds of hydrocarbon molecular species, methanol, ethanol, 1-propanol, 2-propanol, acetone, acetaldehyde, methane, ethane, ethylene, allene, 1,3-butadiene, and cyclohexane, induced by intense laser fields (approximately 10(14) W/cm(2)) have been investigated by time-of-flight mass spectroscopy. The observation of the H(3)(+) production with the kinetic energy range of 3.5-5.0 eV from doubly ionized ethylene, allene, 1,3-butadiene, and cyclohexane, which have no methyl groups, showed the existence of the ultrafast hydrogen migration processes that enables three hydrogen atoms to come together to form H(3)(+) within a hydrocarbon molecule.


Assuntos
Hidrocarbonetos/química , Lasers , Trítio/química , Cinética , Espectrometria de Massas
10.
J Chem Phys ; 128(20): 204308, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18513020

RESUMO

Laser induced fluorescence spectra of the NC(3)O radical in a supersonic jet have been observed. The radical was produced in a pulsed electric discharge of HC(3)N and O(2) diluted to 0.3% with Ar. A total of 17 vibronic bands with a radiative lifetime of approximately 30 ns have been observed in a region from 27 000 to 27 500 cm(-1). The observed vibronic bands are classified as (2)Pi(12)-(2)Pi(12), (2)Pi(32)-(2)Pi(32), and (2)Sigma-(2)Sigma types. The upper states of the (2)Sigma-(2)Sigma bands have large spin-rotation constants, which should be denoted as Sigma((+)) and Sigma((-)). From high-level ab initio calculations and rotational analyses, the observed transition was assigned to the B (2)Pi-X (2)A(") transition. Dispersed fluorescence spectra from the upper (2)Sigma and (2)Pi vibronic levels have also been observed, yielding fundamental vibrational frequencies for the nu(1), nu(2), nu(3), and nu(7) modes of the ground state.

11.
J Chem Phys ; 127(18): 184304, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18020636

RESUMO

Electronic spectra of the C3N radical have been observed for the first time in the near ultraviolet wavelength region by laser induced fluorescence (LIF) spectroscopy. Seventeen vibronic bands of the B 2Pii-X 2Sigma+ electronic transition system of C3N were identified in LIF spectra of products in a discharge of HC3N. The origin of the B 2Pii state was determined to be 27,929.985(1) cm(-1) from rovibrational analyses. It was found that observations of two types of 2Sigma vibronic levels, which have 2Sigma+ and 2Sigma+/- symmetries originated from excitations of the nu4 trans-bending mode (omega4=369.1(20) cm(-1)) with a large Renner-Teller (RT) interaction (epsilon4=-0.1549(50)), and the nu5 cis-bending mode (omega5=163.24(84) cm(-1)) with a small Renner-Teller interaction (epsilon5=-0.0503(68)), respectively. Vibronic levels, with excitations of the C-C stretching (omega3=869.7 cm(-1)) mode, were also identified. The spin-orbit interaction constant was determined to be Aso=-36.7(50) cm(-1) from the RT analysis. In dispersed fluorescence spectra from B 2Pii, vibrational structures of the low-lying electronically excited A 2Pii state were clearly observed with a strong progression due to the nu3' mode, together with those of the X 2Sigma+ state with weak intensities. The origin of A 2Pii, T0=1844(3) cm(-1), and the vibrational frequencies, omega3'=883(3) cm(-1) and omega5'=121(3) cm(-1) for A 2Pii, and omega3"=1054(3) cm(-1), omega4"=405(3) cm(-1), and omega5"=131(3) cm(-1) for X 2Sigma+, were determined. Time profiles of fluorescence from B 2Pii have short (50-200 ns) and long (>1 micros) decay components with quantum beats, indicating that there is a competition between radiative decay and the nonradiative internal conversion to vibrationally highly excited A 2Pii and X 2Sigma+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...