Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(7): e5038, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864725

RESUMO

Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 µM) include PBPs (PBP1a, KD = 0.07 µM; PBP5 = 0.4 µM); other lytic transglycosylases (SltB2, KD = 0.09 µM; RlpA, KD = 0.4 µM); a type VI secretion system effector (Tse5, KD = 0.3 µM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 µM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Periplasma/metabolismo , Periplasma/enzimologia , Proteínas Periplásmicas/metabolismo , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Peptidoglicano/metabolismo , Peptidoglicano/química
2.
RSC Chem Biol ; 5(5): 467-472, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725908

RESUMO

The enzymatic synthesis of xenobiotic nucleic acids (XNA), which are artificially sugar-modified nucleic acids, is essential for the preparation of XNA libraries. XNA libraries are used in the in vitro selection of XNA aptamers and enzymes (XNAzymes). Efficient enzymatic synthesis of various XNAs can enable the screening of high-quality XNA aptamers and XNAzymes by expanding the diversity of XNA libraries and adding a variety of properties to XNA aptamers and XNAzymes. However, XNAs that form unstable duplexes with DNA, such as arabino nucleic acid (ANA), may dissociate during enzyme synthesis at temperatures suitable for thermophilic polymerases. Thus, such XNAs are not efficiently synthesised by the thermophilic polymerase mutants at the end of the sequence. This undesirable bias reduces the possibility of generating high-quality XNA aptamers and XNAzymes. Here, we demonstrate that polyamine-induced DNA/ANA duplex stabilisation promotes ANA synthesis that is catalysed by thermophilic polymerase mutants. Several polyamines, including spermine, spermidine, cadaverine, and putrescine promote ANA synthesis. The negative effect of polyamines on the fidelity of ANA synthesis was negligible. We also showed that polyamines promote the synthesis of other XNAs, including 2'-amino-RNA/2'-fluoro-RNA mixture and 2'-O-methyl-RNA. In addition, we found that polyamine promotes DNA synthesis from the 2'-O-methyl-RNA template. Polyamines, with the use of thermophilic polymerase mutants, may allow further development of XNA aptamers and XNAzymes by promoting the transcription and reverse transcription of XNAs.

3.
Molecules ; 28(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067640

RESUMO

Enzymatic oligonucleotide synthesis is used for the development of functional oligonucleotides selected by in vitro selection. Expanding available sugar modifications for in vitro selection helps the functional oligonucleotides to be used as therapeutics reagents. We previously developed a KOD DNA polymerase mutant, KOD DGLNK, that enzymatically synthesized fully-LNA- or 2'-O-methyl-modified oligonucleotides. Here, we report a further expansion of the available 2'-O-alkyl-modified nucleotide for enzymatic synthesis by KOD DGLNK. We chemically synthesized five 2'-O-alkyl-5-methyluridine triphosphates and incorporated them into the oligonucleotides. We also enzymatically synthesized a 2'-O-alkyl-modified oligonucleotide with a random region (oligonucleotide libraries). The 2'-O-alkyl-modified oligonucleotide libraries showed high nuclease resistance and a wide range of hydrophobicity. Our synthesized 2'-O-alkyl-modified oligonucleotide libraries provide novel possibilities that can promote the development of functional molecules for therapeutic use.


Assuntos
DNA Polimerase Dirigida por DNA , Oligonucleotídeos , Oligonucleotídeos/química , DNA Polimerase Dirigida por DNA/química , Nucleotídeos
4.
Protein Sci ; 32(10): e4781, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703013

RESUMO

The 11 lytic transglycosylases of Pseudomonas aeruginosa have overlapping activities in the turnover of the cell-wall peptidoglycan. Rare lipoprotein A (RlpA) is distinct among the 11 by its use of only peptidoglycan lacking peptide stems. The spatial localization of RlpA and its interactome within P. aeruginosa are unknown. We employed suppression of introduced amber codons at sites in the rlpA gene for the introduction of the unnatural-amino-acids Νζ -[(2-azidoethoxy)carbonyl]-l-lysine (compound 1) and Nζ -[[[3-(3-methyl-3H-diazirin-3-yl)propyl]amino]carbonyl]-l-lysine (compound 2). In live P. aeruginosa, full-length RlpA incorporating compound 1 into its sequence was fluorescently tagged using strained-promoted alkyne-azide cycloaddition and examined by fluorescence microscopy. RlpA is present at low levels along the sidewall length of the bacterium, and at higher levels at the nascent septa of replicating bacteria. In intact P. aeruginosa, UV photolysis of full-length RlpA having compound 2 within its sequence generated a transient reactive carbene, which engaged in photoaffinity capture of neighboring proteins. Thirteen proteins were identified. Three of these proteins-PBP1a, PBP5, and MreB-are members of the bacterial divisome. The use of the complementary methodologies of non-canonical amino-acid incorporation, photoaffinity proximity analysis, and fluorescent microscopy confirm a dominant septal location for the RlpA enzyme of P. aeruginosa, as a divisome-associated activity. This accomplishment adds to the emerging recognition of the value of these methodologies for identification of the intracellular localization of bacterial proteins.


Assuntos
Lipoproteína(a) , Pseudomonas aeruginosa , Lipoproteína(a)/metabolismo , Códon de Terminação/metabolismo , Peptidoglicano/metabolismo , Lisina/metabolismo
5.
J Am Chem Soc ; 142(51): 21530-21537, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33306372

RESUMO

Xenobiotic nucleic acids (XNAs) are chemically modified nucleic acid analogues with potential applications in nucleic acid-based therapeutics including nucleic acid aptamers, ribozymes, small interfering RNAs, and antisense oligonucleotides. We have developed a promising XNA for therapeutic uses, 2',4'-bridged nucleic acid (2',4'-BNA), also known as locked nucleic acid (LNA). Unlike the rational design of small interfering and antisense oligonucleotides, the development of LNA aptamers and catalysts requires genetically engineered polymerases that enable the synthesis of LNA from DNA and the converse reverse transcription. However, no LNA decoders or encoders with sufficient performance have been developed. In this study, we developed variants of KOD DNA polymerase, a family B DNA polymerase derived from Thermococcus kodakarensis KOD1, which are effective LNA decoders and encoders, via structural analyses. KOD DGLNK (KOD: N210D/Y409G/A485L/D614N/E664K) enabled LNA synthesis from DNA (DNA → LNA), and KOD DLK (KOD: N210D/A485L/E664K) enabled LNA reverse transcription to DNA (LNA → DNA). Both variants exhibited greatly improved efficiency and accuracy. Notably, we synthesized LNAs longer than one kilobase using KOD DGLNK. We also showed that these variants can accept 2'-O-methyl (2'-OMe), a common modification for therapeutic uses. Here, we also show that LNA and 2'-OMe mix aptamer can be practically obtained via SELEX. The variants can be used as powerful tools for creating XNA aptamers and catalysts to completely eliminate the natural species, DNA and RNA.


Assuntos
DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Engenharia Genética , Oligonucleotídeos/genética , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Mutação , Oligonucleotídeos/metabolismo , Transcrição Reversa
6.
Bioorg Med Chem Lett ; 26(2): 530-533, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26627581

RESUMO

Recently, 7-substituted 7-deazapurine nucleoside triphosphates and 5-substituted pyrimidine nucleoside triphosphates (dN(am)TPs) were synthesized to extend enzymatically using commercially available polymerase. However, extension was limited when we attempted to incorporate the substrates consecutively. To address this, we have produced a mutant polymerase that can efficiently accept the modified nucleotide with amphiphilic groups as substrates. Here we show that the KOD polymerase mutant, KOD exo(-)/A485L, had the ability to incorporate dN(am)TP continuously over 50nt, indicating that the mutant is sufficient for generating functional nucleic acid molecules.


Assuntos
DNA Polimerase Dirigida por DNA/química , Oligodesoxirribonucleotídeos/química , Nucleotídeos de Purina/química , Nucleotídeos de Pirimidina/química , DNA Polimerase Dirigida por DNA/genética , Oligodesoxirribonucleotídeos/genética , Mutação Puntual , Polietilenoglicóis/química , Nucleotídeos de Purina/genética , Nucleotídeos de Pirimidina/genética , Temperatura
7.
Bioorg Med Chem Lett ; 25(15): 2888-91, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048797

RESUMO

Here, we describe the enzymatic construction of a new larger base pair formed between adenine (A) and a 4-hydroxy-2-mercaptobenzimidazole (SB) nucleobase analogue. We investigated the enzymatic incorporation of 2'-deoxynucleoside-5'-triphosphate bearing a SB nucleobase analogue (dSBTP) into oligonucleotides (ONs) by DNA polymerases. dSBTP could be effectively incorporated at the site opposite a dA in a DNA template by several B family DNA polymerases. These findings provide new insights into various aspects of biotechnology, including the design of non-natural base pairs.


Assuntos
Adenina/metabolismo , Benzimidazóis/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos/metabolismo , Polifosfatos/metabolismo , Adenina/química , Pareamento de Bases , Sequência de Bases , Benzimidazóis/química , Primers do DNA/química , Primers do DNA/metabolismo , Nucleotídeos/química , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Polimerização , Polifosfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA