Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26733, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439822

RESUMO

Intending to advance the use of halide-perovskites in technological applications, in this research, we investigate the structural, electronic, optical, and mechanical behavior of metal-halide perovskites ACaCl3 (A = Cs, Tl) through first-principle analysis and assess their potential applications. Due to the applied hydrostatic pressure, the interaction between constituent atoms increases, thereby causing the lattice parameter to decrease. The band structure reveals that band gap nature transits from indirect to direct at elevated pressure. Moreover, at high pressure, the electronic band structure shows a notable band gap contraction from the insulator (>5.0 eV) to the semiconductor region, which makes them promising for electronic applications. The charge density map explores the ionic and covalent characteristics of Cs/Tl-Cl and Ca-Cl under pressured and unpressurized environments. Induced pressure enhances the optical conductivity as well as the optical absorption that moves toward the low-energy region (red shift), making ACaCl3 (A = Cs, Tl) advantageous for optoelectronic applications. Additionally, this study reveals that the mechanical properties of ductility and anisotropy were found to be improved at higher pressures than in ambient conditions. Overall, this study will shed light on the technological applications of lead-free halide perovskites in extreme pressure conditions.

2.
RSC Adv ; 12(42): 27492-27507, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36276026

RESUMO

First-principles-based DFT calculations have been carried out to analyze the structural, mechanical, elastic anisotropic, Vickers hardness, electronic, optical, and thermodynamic properties of TlBO3 (B = Cr, Mn) for the first time. We determined the lattice parameters, which are in good agreement with the previous results. The Born criteria was ensured by the elastic constants, which also confirms the ductility of the solid. The elastic constants were also used to evaluate and analyze some related physical properties. The values of Vickers hardness were calculated to determine the hardness and relative application of both TlCrO3 and TlMnO3. Though the metallic characteristics were evaluated via the investigation of the electronic band structure and density of states, both TlCrO3 and TlMnO3 reveal semiconducting behavior under spin-orbit polarization with up-spin and down-spin configurations. Significant constants such as absorption, conductivity, reflectivity, dielectric, loss function, and refractive index were also considered and determined without spin and with spin. As a result, various possible electronic, optical, and optoelectronic applications were predicted. TlBO3 (B = Cr, Mn) was also found to be reliable for thermal barrier coating (TBC) as indicated by the evaluated values of thermal conductivity and Debye temperature.

3.
ACS Omega ; 7(24): 20914-20926, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35755384

RESUMO

The effects of alkaline-earth metals on electronic, optical, thermodynamic, and physical properties of ferromagnetic AVO3 (A = Ba, Sr, Ca, and Mg) have been investigated by first-principles calculations within the GGA+U formalism based on density functional theory. The optimized structural parameters are in good agreement with the available experimental results that evaluate the reliability of our calculations. The cell and mechanical stability is discussed using the formation energy and Born stability criteria, respectively. The mechanical behaviors of AVO3 are discussed on the basis of the results of elastic constants, elastic moduli, Peierls stress, and Vickers hardness. The nature of the ductile-brittle transition of AVO3 compounds was confirmed by the values of Pugh's ratio, Poisson's ratio, and Cauchy pressure. The electronic band structures, as well as density of states, reveal the half-metallic behavior of BaVO3 and SrVO3. However, CaVO3 and MgVO3 exhibit spin-gapless and magnetic semiconductor characteristics, respectively. The microscopic origin of the transition from the half-metallic to semiconductor nature of AVO3 is rationalized using electronic properties. The presence of covalent, ionic, and metallic bonds in AVO3 compounds is found by the analysis of bonding properties. The single-band nature of half-metallic AVO3 is seen by observing hole-like Fermi surfaces in this study. Furthermore, the various thermodynamic and optical properties are calculated and analyzed. The refractive index suggests that AVO3 could be a potential candidate for applications to high-density optical data storage devices.

4.
Sci Rep ; 12(1): 8663, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606370

RESUMO

The current study diligently analyzes the physical characteristics of halide perovskites AGeF3 (A = K, Rb) under hydrostatic pressure using density functional theory. The goal of this research is to reduce the electronic band gap of AGeF3 (A = K, Rb) under pressure in order to improve the optical characteristics and assess the compounds' suitability for optoelectronic applications. The structural parameters exhibit a high degree of precision, which correlates well with previously published work. In addition, the bond length and lattice parameters decrease significantly leading to a stronger interaction between atoms. The bonding between K(Rb)-F and Ge-F reveal ionic and covalent nature, respectively, and the bonds become stronger under pressure. The application of hydrostatic pressure demonstrates remarkable changes in the optical absorption and conductivity. The band gap becomes lower with the increment of pressure, resulting in better conductivity. The optical functions also predict that the studied materials might be used in a variety of optoelectronic devices operating in the visible and ultraviolet spectrum. Interestingly, the compounds become more suitable to be used in optoelectronic applications under pressure. Moreover, the external pressure has profound dominance on the mechanical behavior of the titled perovskites, which make them more ductile and anisotropic.

5.
ACS Omega ; 6(24): 15975-15980, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179642

RESUMO

A novel distorted perovskite-type (K0.2Sr0.8)(Na0.01Ca0.25Bi0.74)O3 was prepared by a hydrothermal method using the starting materials NaBiO3·nH2O, Sr(OH)2·8H2O, Ca(OH)2, and KOH. Single-crystal X-ray diffraction of the novel compound revealed a GdFeO3-related structure belonging to the monoclinic system of the space group Cc with the following cell parameters: a = 11.8927 (17) Å, b = 11.8962 (15) Å, c = 8.4002 (10) Å, and ß = 90.116 (9)°. The final R-factors were obtained as R 1 = 0.0354 and wR 2 = 0.0880 (using all the data). K+ and Sr2+ ions were distributed at four types of A-sites. On the other hand, four Bi5+-sites (Bi1, Bi2, Bi3, and Bi4) were occupied by four Ca2+ ions (Ca1, Ca2, Ca3, and Ca4), and the first three B-sites were occupied predominantly by Bi5+ with Na+ ions. The forth B-site was occupied predominantly by the Ca2+ ion with Bi5+ ions. Two types of B-sites, thus forming tilted distorted (Na/Ca/Bi)O6 and (Bi/Ca)O6 octahedra, have an ordering of 3:1 represented as (K/Sr)4(Na/Ca/Bi)3(Bi/Ca)O12. The distorted (Na/Ca/Bi)O6 and (Ca/Bi)O6 octahedra formed a perovskite-type network by corner sharing with features closely matching those of a GdFeO3-type structure. The novel compound is the first example of a perovskite-type bismuth oxide containing only Bi5+ in a system without a Ba atom and has a unique ordering (3:1) of the B site. The compound showed photocatalytic activity for phenol degradation under visible light irradiation.

6.
RSC Adv ; 11(58): 36367-36378, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35494392

RESUMO

Density functional theory is utilized to explore the effects of hydrostatic pressure on the structural, electrical, optical, and mechanical properties of cubic halide perovskite KCaCl3 throughout this study. The interatomic distance is decreased due to the pressure effect, which dramatically lowers the lattice constant and unit cell volume of this perovskite. Under pressure, the electronic band gap shrinks from the ultra-violet to visible region, making it easier to move electrons from the valence band to the conduction band, which improves optoelectronic device efficiency. Furthermore, the band gap nature is switched from indirect to direct around 40 GPa pressure, which is more suitable for a material to be exploited in optoelectronic applications. The use of KCaCl3 in microelectronics, integrated circuits, QLED, OLED, solar cells, waveguides, solar heat reduction materials, and surgical instruments has been suggested through deep optical analysis. The use of external hydrostatic pressure has a considerable impact on the mechanical properties of this material, making it more ductile and anisotropic.

7.
ACS Omega ; 4(18): 17762-17772, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31681882

RESUMO

In this article, we perform density functional theory calculation to investigate the electronic and optical properties of newly reported In3-x Se4 compound using CAmbridge Serial Total Energy Package (CASTEP). Structural parameters obtained from the calculations agree well with the available experimental data, indicating their stability. In the band structure of In3-x Se4 (x = 0, 0.11, and, 0.22), the Fermi level (E F) crossed over several bands in the conduction bands, which is an indication of the n-type metal-like behavior of In3-x Se4 compounds. On the other hand, the band structure of In3-x Se4 (x = 1/3) exhibits semiconducting nature with a band gap of ∼0.2 eV. A strong hybridization among Se 4s, Se 4p and In 5s, In 5p orbitals for In3Se4 and that between Se 4p and In 5p orbitals were seen for ß-In2Se3 compound. The dispersion of In 5s, In 5p and Se 4s, Se 4p orbitals is responsible for the electrical conductivity of In3Se4 that is confirmed from DOS calculations as well. Moreover, the bonding natures of In3-x Se4 materials have been discussed based on the electronic charge density map. Electron-like Fermi surface in In3Se4 ensures the single-band nature of the compound. The efficiency of the In3-x Se4/p-Si heterojunction solar cells has been calculated by Solar Cell Capacitance Simulator (SCAPS)-1D software using experimental data of In3-x Se4 thin films. The effect of various physical parameters on the photovoltaic performance of In3-x Se4/p-Si solar cells has been investigated to obtain the highest efficiency of the solar cells. The optimized power conversion efficiency of the solar cell is found to be 22.63% with V OC = 0.703 V, J SC = 38.53 mA/cm2, and FF = 83.48%. These entire theoretical predictions indicate the promising applications of In3-x Se4 two-dimensional compound to harness solar energy in near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...