Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(21): 15085-15094, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38720970

RESUMO

Water contamination due to organic pollutants is a challenging issue around the globe, and several attempts have been made to deal with this issue. Out of which, the semiconductor-based photocatalytic process had gained much attention and proved to be an efficient, easy, and economical process for the removal of organic dyes from aqueous solutions. For this purpose, the iron oxide-zirconium dioxide nanocomposite (Fe2O3-ZrO2 NC) was prepared via a simple mechanochemical process using a mortar and pestle, followed by a calcination process at 300, 600, and 900 °C. Different physicochemical analyses were carried out in order to investigate the successful synthesis of Fe2O3-ZrO2 NC and the effect of temperature on the crystallinity, surface area, pore size, phase composition, sample morphology, and particle/crystallite size. The Fe2O3-ZrO2 NCs were subjected to a photocatalytic test under solar light irradiation against fluorescein dye in an aqueous medium, and the photocatalytic performance was examined under the influence of calcination temperatures, pH, catalyst dose, and initial concentration. The stability of the Fe2O3-ZrO2 NCs was also checked by recycling them for five reuse cycles.

2.
ACS Omega ; 9(12): 13906-13916, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559920

RESUMO

The world needs sustainable energy resources with affordable, economic, and accountable sources. Consequently, energy innovation technologies are evolving toward electrochemical applications like batteries, supercapacitors, etc. The current study involves the solid blend biopolymer electrolyte (SBBE) with different compositions of sodium alginate blended with pectin via the casting technique. The characterization of the sample was tested by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, AC impedance, linear sweep voltammetry (LSV), and cyclic voltammetry (CV) analyses. Evidently, the sample NP4 (NaAlg/pectin = 60:40 wt %) has a higher conductivity of 1.26 × 10-7 and 3.25 × 10-6 S cm-1 at 303 and 353 K, respectively. The performances of the samples were analyzed with variations in temperature, frequency, and time responses to signify the blended nature of the electrolyte. Hence, the studied biopolymers can be constructed for electrochemical device applications.

3.
RSC Adv ; 14(13): 8769-8778, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38495998

RESUMO

This study employed various experimental techniques to produce graphene oxide (GO) under different conditions, such as the inclusion or exclusion of NaNO3, and reduced graphene oxide (RGO) with or without the catalyst CaCl2. The procedure of decreasing RGO was carried out using the reducing agent NaBH4. Moreover, the prepared mixtures were utilized in the degradation process of methylene blue (MB) dye using photo-catalysis, with exposure to both ultraviolet (UV) light and sunlight. When exposed to UV and sunlight irradiation, WN-GO showed rapid and ecologically friendly breakdown of MB dye in comparison to N-GO. WN-GO exhibited exceptional adsorption capabilities, surpassing other tested materials like N-GO, WN-C-RGO and C-RGO. Although WN-C-RGO has demonstrated satisfactory performance in terms of photo-catalytic degradation, as the concentration-time graph of the MB dye revealed significant degradation, with a reduction of up to 90% and 62.5% under UV light and sunlight exposure, respectively. These results offer insightful information on the potential of graphene-based materials to address other environmental issues, particularly in the areas of water treatment.

4.
ACS Omega ; 9(8): 9147-9160, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434879

RESUMO

In this study, lead-free BiM2+(Zn, Ca, Mg)Ti-BiFeO3 ceramics are fabricated under eco-friendly hydrothermal reaction conditions at 250 °C. XRD patterns show that all the synthesized compounds exhibit a phase coexistence of monoclinic and tetragonal perovskite-type structures with a morphotropic phase boundary at x = 0.4, with minimum impurity. The calculated average crystallite/grain size of the samples was close to 50 nm at full width at half-maximum of the main peak. The corresponding bonds of the constituent elements were observed by FTIR analysis, which further supports the formation of the local structure. EDS analyses detect all of the elements, their quantities, and compositional homogeneity. SEM data show agglomerated and nearly spherical morphology with an average particle size of about 128 nm. All synthesized ceramic powders revealed thermal stability with trivial mass loss up to investigated high temperatures (1000 οC). The dielectric constant reached its maximum at 38.7 MHz and finally remained constant after 80 MHz for all nanoceramics. Because of the complementary impact of different compositions, the most effective piezoelectric characteristics of d33 = 136 pCN-1, Pr = 8.6 pCN-1 cm-2, and kp = 11% at 30 °C were attained at x = 0.4 content for 0.4BiCaTi-0.6BiFeO3 ceramic. The measured magnetic hysteresis data (M-H curve) showed a weak ferromagnetic nature with the highest moment of ∼0.23 emu/g for 0.4BiCaTi-0.6BiFeO3, and other samples exhibited negligible ferromagnetic to diamagnetic transition. The optical response study shows that the 0.4BiMgTi-0.6BiFeO3 sample yielded the maximal transmittance (50%), whereas the 0.4BiCaTi-0.6BiFeO3 compound exhibited the highest refractive index. The calculated large band gap shows a high insulating or dielectric nature. Our findings demonstrate that the BiM2+Ti-BiFeO3 system, which was fabricated using a low-temperature hydrothermal technique, is an excellent lead-free piezoelectric and multiferroic nanoceramic.

5.
Langmuir ; 40(14): 7560-7568, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38553424

RESUMO

It is essential and challenging to develop green and cost-effective solar cells to meet the energy demands. Solar cells with a perovskite light-harvesting layer are the most promising technology to propel the world toward next-generation solar energy. Formamidinium lead tri-iodide (FAPbI3)-based perovskite solar cells (F-PSCs), with their considerable performance, offer cost-effective solar cells. One of the major issues that the PSC community is now experiencing is the stability of α-FAPbI3 at relatively low temperatures. In this study, we fabricated FAPbI3-PSCs using cyclohexane (CHX) material via a two-step deposition method. For this purpose, CHX is added to the formamidinium iodide:methylammonium chloride (FAI:MACl) solution as an additive and used to form a better FAPbI3 layer by controlling the reaction between FAI and lead iodide (PbI2). The CHX additive induces the reaction of undercoordinated Pb2+ with FAI material and produces an α-FAPbI3 layer with low charge traps and large domains. In addition, the CHX-containing FAPbI3 layers show higher carrier lifetimes and facilitate carrier transfer in F-PSCs. The CHX-modified F-PSCs yield a high champion efficiency of 22.84% with improved ambient and thermal stability behavior. This breakthrough provides valuable findings regarding the formation of a desirable FAPbI3 layer for photovoltaic applications and holds promise for the industrialization of F-PSCs.

6.
RSC Adv ; 14(7): 4436-4447, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38312721

RESUMO

In this study, we developed an ink using hexanethiol and Cu(In,Ga)Se2 microcrystals (CIGSe MCs) to make thin films via doctor blade coating. Besides, crack-free thin films were obtained by optimizing CIGSe MC powder concentration and annealing temperature. Subsequently, single-step selenization was performed with and without sodium chloride (NaCl) surface treatment by carefully tuning the temperature. A crack-free surface with densely packed grains was obtained at 500 °C after NaCl treatment. Moreover, the structural parameters of the thin film (annealed at 350 °C) were significantly modified via selenization with NaCl at 500 °C. For instance, the FWHM of the prominent (112) plane reduced from 1.44° to 0.47°, the dislocation density minimized from 13.10 to 1.40 × 1015 lines per m2, and the microstrain decreased from 4.14 to 1.35 × 10-3. Remarkably, these thin films exhibited a high mobility of 26.7 cm2 V-1 s-1 and a low resistivity of 0.03 Ω cm. As a proof of concept, solar cells were engineered with a device structure of SLG/Mo/CIGSe/CdS/i-ZnO/Al-ZnO/Ag, wherein a power conversion efficiency (PCE) of 5.74% was achieved with exceptional reproducibility. Consequently, the outcomes of this investigation revealed the impact of selenization temperature and NaCl treatment on the physical properties and PCE of hexanethiol-based crack-free CIGSe MC ink-coated absorbers, providing new insights into the groundwork of cost-effective solar cells.

7.
Phys Chem Chem Phys ; 26(4): 3229-3239, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193862

RESUMO

Perovskites composed of inorganic cesium (Cs) halide provide a route to thermally resistant solar cells. Nevertheless, the use of hole-transporting layers (HTLs) with hydrophobic additives is constrained by moisture-induced phase deterioration. Due to significant electrical loss, dopant-free HTLs are unable to produce practical solar cells. In this article, we designed a two-dimensional 1,3,6,8-tetrakis[5-(N,N-di(p-(methylthio)phenyl)amino-p-phenyl)-thiophen-2-yl]pyrene (termed SMe-TATPyr) molecule as a new HTL to regulate electrical loss in lead-free perovskite solar cells (PSCs). We optimized the power conversion efficiency (PCE) of PSCs based on mixed tin (Sn)/germanium (Ge) halide perovskite (CsSn0.5Ge0.5I3) by exploring different factors, such as the deep and shallow levels of defects, density of states at the valence band (NV), thickness of the perovskite film, p-type doping concentration (NA) of HTL, the series and shunt resistances, and so on. We carried out comparative research by employing the 1D-SCAPS (a solar cell capacitance simulator) analysis tool. Through optimization of the PSC, we obtained the highest parameters in the simulated solar cell structure of fluorine tin oxide (FTO)/titanium dioxide (TiO2)/CsSn0.5Ge0.5I3/SMe-TATPyr/gold (Au), and the PCE reached up to 20% with a fill factor (FF) of 81.89%.

8.
Sci Rep ; 14(1): 1473, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233504

RESUMO

Cu2ZnSn(S,Se)4 is a non-toxic, earth-abundant photovoltaic absorber. However, its efficiency is limited by a large open circuit voltage (VOC) deficit occurring due to its antisite defects and improper band alignment with toxic CdS buffer. Therefore, finding an absorber and non-toxic buffers that reduce VOC deficit is crucial. Herein, for the first time, Ag2BaTiSe4 is proposed as an alternative absorber using SCAPS-1D wherein a new class of alkaline earth metal chalcogenide such as MgS, CaS, SrS, and BaS is applied as buffers, and their characteristics are compared with CdS to identify their potential and suitability. The buffer and absorber properties are elucidated by tuning their thickness, carrier concentration, and defect density. Interestingly, optimization of the buffer's carrier concentration suppressed the barrier height and accumulation of charge carriers at the absorber/buffer interface, leading to efficiencies of 18.81%, 17.17%, 20.6%, 20.85%, 20.08% in MgS, CaS, SrS, BaS, and CdS-based solar cells respectively. Upon optimizing Ag2BaTiSe4, MoSe2, and interface defects maximum efficiency of > 28% is achieved with less VOC loss (~ 0.3 V) in all solar cells at absorber's thickness, carrier concentration, and defect density of 1 µm, 1018 cm-3, 1015 cm-3 respectively, underscoring the promising nature of Ag2BaTiSe4 absorber and new alkaline earth metal chalcogenide buffers in photovoltaics.

9.
Heliyon ; 10(1): e24107, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226290

RESUMO

Perovskite photovoltaics have an immense contribution toward the all-round development of the solar cell. Apart from the flexibility, stability, and high efficiency, more stress has been given to using lead-free as well as eco-friendly, inexpensive materials in the fabrication of PSC devices. The utilization of non-volatile material, such as cesium tin iodide (CsSnI3), can be proposed for designing the PSC device, which not only makes it eco-friendly but also offers better optoelectronic characteristics due to its smaller bandgap of 1.27 eV. The inclusion of Sn in the perovskite material also functions as an increment in the stability of the perovskite. In the present simulation, CsSnI3 is used as an active absorber layer while the ZnMgO is used as an ETL for a cost-effective nature. Similarly, graphene oxide (GO) is used as HTL for a superior collection of holes. The comprehensive numerical modeling of the ZnMgO can be utilized in solar cell designing with appropriate CsSnI3 thickness, working temperature, total defectivity, and resistance impact, respectively. The presently simulated device offers an excellent efficiency of 17.37 % with CsSnI3-based PSC. These results of the study also show an effective route to develop highly efficient lead-free PSC devices.

10.
Heliyon ; 9(12): e22866, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125486

RESUMO

Conventional Copper Indium Gallium Di Selenide (CIGS)-based solar cells are more efficient than second-generation technology based on hydrogenated amorphous silicon (a-Si: H) or cadmium telluride (CdTe). So, herein the photovoltaic (PV) performance of CIGS-based solar cells has been investigated numerically using SCAPS-1D solar simulator with different buffer layer and less expensive tin sulfide (Sn2S3) back-surface field (BSF). At first, three buffer layer such as cadmium sulfide (CdS), zinc selenide (ZnSe) and indium-doped zinc sulfide ZnS:In have been simulated with CIGS absorber without BSF due to optimized and non-toxic buffer. Then the optimized structure of Al/FTO/ZnS:In/CIGS/Ni is modified to become Al/FTO/ZnS:In/CIGS/Sn2S3/Ni by adding a Sn2S3 BSF to enhanced efficiency. The detailed analysis have been investigated is the influence of physical properties of each absorber and buffer on photovoltaic parameters including layer thickness, carrier doping concentration, bulk defect density, interface defect density. This study emphasizes investigating the reasons for the actual devices' poor performance and illustrates how each device's might vary open-circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF), power conversion efficiency (PCE), and quantum efficiency (QE). The optimized structure offers outstanding power conversion efficiency (PCE) of 21.83 % with only 0.80 µm thick CIGS absorber. The proposed CIGS-based solar cell performs better than the previously reported conventional designs while also reducing CIGS thickness and cost.

11.
RSC Adv ; 13(49): 34693-34702, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38035252

RESUMO

With increased efficiency, simplicity in manufacturing, adaptability, and flexibility, solar cells constructed from organic metal halide perovskite (PVK) have recently attained great eminence. Lead, a poisonous substance, present in a conventional PVK impacts the environment and prevents commercialization. To deal with this issue, a number of toxicity-free PVK-constructed solar cells have been suggested. Nevertheless, inherent losses mean the efficiency conversion accomplished from these devices is inadequate. Therefore, a thorough theoretical investigation is indispensable for comprehending the losses to improve efficiency. The findings of a unique modelling method for organic lead-free solar cells, namely methylammonium tin iodide (MASnI3), are investigated to reach the maximum practical efficiencies. The layer pertinent to MASnI3 was constructed as a sandwich between a bio-synthesized electron transport layer (ETL) of CeO2 and a hole transport layer (HTL) of CuCrO2 in the designed perovskite solar cells (PSCs). In this study, the use of algae-synthesized Au in the back contacts has been proposed. To obtain the maximum performance, the devices are further analyzed and optimized for active layer thickness, working temperature, total and interface defect density analysis, impedance analysis (Z'-Z), and capacitance-voltage (C-V), respectively. An optimal conversion efficiency of 26.60% has been attained for an MASnI3-constructed PSC. The study findings may open the door to a lead-free PSC through improved conversion efficiencies.

12.
Heliyon ; 9(11): e21675, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027926

RESUMO

Lead-free halide perovskites are a crucial family of materials in the fabrication of solar cells. At present, Solar cells are facing several challenges such as mechanical and thermodynamic instability, toxicity, unsuitable optical parameters, bandgap, and absorption coefficient. Ba3AsI3 is a halide perovskite which has demonstrated good efficiency and tremendous promise for usage in solar cell applications, and it offers a possible solution to these issues. In this study, the properties of the Ba3AsI3 perovskite solar cell were investigated using first-principles density functional theory (FP-DFT) calculations with the CASTEP (Cambridge serial total energy package) formulation. Most of its physical qualities, including its elasticity, electrical composition, bonding, optoelectronic characteristics, and optical characteristics have not yet been explored. In this work, these unexplored properties have been thoroughly investigated using density functional theory-based computations. The Born-Huang criterion and phonon dispersion characteristics have revealed that the material is mechanically stable. The bonding nature has been investigated using the density of states curves, Mulliken population analysis, and electronic charge density. Additionally, different elastic parameters demonstrate that Ba3AsI3 has reasonably high machinability and is mechanically isotropic. ELATE's three-dimensional visualization and optical properties also show isotropic behavior in all directions. The band structure shows that the bandgap is direct. Based on its direct bandgap, stability, large range of absorption coefficient, and suitable optical parameters, Ba3AsI3 is recommended as an absorber layer for solar cell fabrication in a near future.

13.
Heliyon ; 9(11): e21498, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37964826

RESUMO

This study employs Machine Learning (ML) techniques to optimize the performance of Perovskite Solar Cells (PSCs) by identifying the ideal materials and properties for high Power Conversion Efficiency (PCE). Utilizing a dataset of 3000 PSC samples from previous experiments, the Random Forest (RF) technique classifies and predicts PCE as the target variable. The dataset includes various features encompassing cell architecture, substrate materials, electron transport layer (ETL) attributes, perovskite characteristics, hole transport layer (HTL) properties, back contact specifics, and encapsulation materials. ML-driven analysis reveals novel, highly efficient PSC configurations, such as Fe2O3/CsPbBrI2/NiO-mp/Carbon, CdS/FAMAPbI3/NiO-C/Au, and PCBM-60/Phen-NaDPO/MAPbI3/asy-PBTBDT/Ag. Additionally, the study investigates the impact of crucial parameters like perovskite bandgap, ETL thickness, thermal annealing temperature, and back contact thickness on device performance. The predictive model exhibits high accuracy (86.4 % R2) and low mean square error (1.3 MSE). Notably, the ML-recommended structure, SnO2/CsFAMAPbBrI/Spiro-OmeTAD/Au, achieves an impressive efficiency of around 23 %. Beyond performance improvements, the research explores the integration of ML into the manufacturing and quality control processes of PSCs. These findings hold promise for enhancing conversion yields, reducing defects, and ensuring consistent PSC performance, contributing to the advancement of this renewable energy technology.

14.
RSC Adv ; 13(45): 31330-31345, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37908652

RESUMO

Strontium antimony iodide (Sr3SbI3) is one of the emerging absorbers materials owing to its intriguing structural, electronic, and optical properties for efficient and cost-effective solar cell applications. A comprehensive investigation on the structural, optical, and electronic characterization of Sr3SbI3 and its subsequent applications in heterostructure solar cells have been studied theoretically. Initially, the optoelectronic parameters of the novel Sr3SbI3 absorber, and the possible electron transport layer (ETL) of tin sulfide (SnS2), zinc sulfide (ZnS), and indium sulfide (In2S3) including various interface layers were obtained by DFT study. Afterward, the photovoltaic (PV) performance of Sr3SbI3 absorber-based cell structures with SnS2, ZnS, and In2S3 as ETLs were systematically investigated at varying layer thickness, defect density bulk, doping density, interface density of active materials including working temperature, and thereby, optimized PV parameters were achieved using SCAPS-1D simulator. Additionally, the quantum efficiency (QE), current density-voltage (J-V), and generation and recombination rates of photocarriers were determined. The maximum power conversion efficiency (PCE) of 28.05% with JSC of 34.67 mA cm-2, FF of 87.31%, VOC of 0.93 V for SnS2 ETL was obtained with Al/FTO/SnS2/Sr3SbI3/Ni structure, while the PCE of 24.33%, and 18.40% in ZnS and In2S3 ETLs heterostructures, respectively. The findings of this study contribute to in-depth understanding of the physical, electronic, and optical properties of Sr3SbI3 absorber perovskite and SnS2, ZnS, and In2S3 ETLs. Additionally, it provides valuable insights into the potential of Sr3SbI3 in heterostructure perovskite solar cells (PSCs), paving the pathway for further experimental design of an efficient and stable PSC devices.

15.
RSC Adv ; 13(38): 26851-26860, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37692356

RESUMO

This research investigates the influence of halide-based methylammonium-based perovskites as the active absorber layer (PAL) in perovskite solar cells (PSCs). Using SCAPS-1D simulation software, the study optimizes PSC performance by analyzing PAL thickness, temperature, and defect density impact on output parameters. PAL thickness analysis reveals that increasing thickness enhances JSC for MAPbI3 and MAPbI2Br, while that of MAPbBr3 remains steady. VOC remains constant, and FF and PCE vary with thickness. MAPbI2Br exhibits the highest efficiency of 22.05% at 1.2 µm thickness. Temperature impact analysis shows JSC, VOC, FF, and PCE decrease with rising temperature. MAPbI2Br-based PSC achieves the highest efficiency of 22.05% at 300 K. Contour plots demonstrate that optimal PAL thickness for the MAPbI2Br-based PSC is 1.2 µm with a defect density of 1 × 1013 cm-3, resulting in a PCE of approximately 22.05%. Impedance analysis shows the MAPbBr3-based PSC has the highest impedance, followed by Cl2Br-based and I-based perovskite materials. A comparison of QE and J-V characteristics indicates MAPbI2Br offers the best combination of VOC and JSC, resulting in superior efficiency. Overall, this study enhances PSC performance with MAPbI2Br-based devices, achieving an improved power conversion efficiency of 22.05%. These findings contribute to developing more efficient perovskite solar cells using distinct halide-based perovskite materials.

16.
ChemistryOpen ; 12(9): e202300067, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37699775

RESUMO

Copper iodide (CuI) thin films were prepared on a glass substrate by a facile high pressure (HP)-PECVD method at room temperature. For this, CuI powder was dissolved in CH3 CN. The CuI vapor with plasma was investigated by Optical Emission Spectroscopic (OES) data for identifying the species in the plasma. The XRD study reveals the polycrystalline nature of the films. The SEM analyses indicate the homogeneity of the films. The EDS mapping confirms that the thin films mostly consisted of carbon followed by nitrogen, copper and iodine, respectively. The band gaps of CuI thin films were in the range of ~2.71-3.14 eV. The high transmittance and band gap engineering in HP-PECVD-synthesized CuI thin films indicates their potential use as window and hole transport layers in low cost solar cells.

17.
Heliyon ; 9(8): e19271, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37654463

RESUMO

In recent years, inorganic perovskite materials have attracted a lot of attention in the field of solar technology due to their exceptional structural, optical, and electronic properties. This study thoroughly investigated, using first-principles density-functional theory (FP-DFT), the impact of compressive and tensile strain on the structural, optical, and electrical properties of the inorganic cubic perovskite Sr3AsI3. The unstrained planar Sr3AsI3 molecule exhibits a direct bandgap of 1.265 eV value at Γ point. The bandgap of the Sr3AsI3 perovskite is lowered to 1.212 eV when the relativistic spin-orbital coupling (SOC) effect is subjected in the observations. In addition, the structure's bandgap exhibits a falling prevalence due to compressive strain and a slight rise due to tensile strain. The optical indicators such as dielectric functions, absorption coefficient, reflectivity, and electron loss function show that this component has a great ability to absorb in the visible range in accordance with band characteristics. When compressive strain is raised, it is discovered that the spikes of the dielectric constant of Sr3AsI3 move to lower photon energy (redshift), and conversely, while growing tensile strain, it exhibits increased photon energy changing behavior (blueshift). As a result, the Sr3AsI3 perovskite is regarded as being ideal for use in solar cells for the production of electricity and light management.

18.
RSC Adv ; 13(34): 23514-23537, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37546214

RESUMO

Lead toxicity is a barrier to the widespread commercial manufacture of lead halide perovskites and their use in solar photovoltaic (PV) devices. Eco-friendly lead-free perovskite solar cells (PSCs) have been developed using certain unique non- or low-toxic perovskite materials. In this context, Sn-based perovskites have been identified as promising substitutes for Pb-based perovskites due to their similar characteristics. However, Sn-based perovskites suffer from chemical instability, which affects their performance in PSCs. This study employs theoretical simulations to identify ways to improve the efficiency of Sn-based PSCs. The simulations were conducted using the SCAPS-1D software, and a lead-free, non-toxic, and inorganic perovskite absorber layer (PAL), i.e. CsSnI3 was used in the PSC design. The properties of the hole transport layer (HTL) and electron transport layer (ETL) were tuned to optimize the performance of the device. Apart from this, seven different combinations of HTLs were studied, and the best-performing combination was found to be ITO/PCBM/CsSnI3/CFTS/Se, which achieved a power conversion efficiency (PCE) of 24.73%, an open-circuit voltage (VOC) of 0.872 V, a short-circuit current density (JSC) of 33.99 mA cm-2 and a fill factor (FF) of 83.46%. The second highest PCE of 18.41% was achieved by the ITO/PCBM/CsSnI3/CuSCN/Se structure. In addition to optimizing the structure of the PSC, this study also analyzes the current density-voltage (J-V) along with quantum efficiency (QE), as well as the impact of series resistance, shunt resistance, and working temperature, on PV performance. The results demonstrate the potential of the optimized structure identified in this study to enhance the standard PCE of PSCs. Overall, this study provides important insights into the development of lead-free absorber materials and highlights the potential of using CsSnI3 as the PAL in PSCs. The optimized structure identified in this study can be used as a base for further research to improve the efficiency of Sn-based PSCs.

19.
ACS Omega ; 8(25): 22466-22485, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396227

RESUMO

CsSnI3 is considered to be a viable alternative to lead (Pb)-based perovskite solar cells (PSCs) due to its suitable optoelectronic properties. The photovoltaic (PV) potential of CsSnI3 has not yet been fully explored due to its inherent difficulties in realizing defect-free device construction owing to the nonoptimized alignment of the electron transport layer (ETL), hole transport layer (HTL), efficient device architecture, and stability issues. In this work, initially, the structural, optical, and electronic properties of the CsSnI3 perovskite absorber layer were evaluated using the CASTEP program within the framework of the density functional theory (DFT) approach. The band structure analysis revealed that CsSnI3 is a direct band gap semiconductor with a band gap of 0.95 eV, whose band edges are dominated by Sn 5s/5p electrons After performing the DFT analysis, we investigated the PV performance of a variety of CsSnI3-based solar cell configurations utilizing a one-dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs such as IGZO, WS2, CeO2, TiO2, ZnO, PCBM, and C60. Simulation results revealed that the device architecture comprising ITO/ETL/CsSnI3/CuI/Au exhibited better photoconversion efficiency among more than 70 different configurations. The effect of the variation in the absorber, ETL, and HTL thickness on PV performance was analyzed for the above-mentioned configuration thoroughly. Additionally, the impact of series and shunt resistance, operating temperature, capacitance, Mott-Schottky, generation, and recombination rate on the six superior configurations were evaluated. The J-V characteristics and the quantum efficiency plots for these devices are systematically investigated for in-depth analysis. Consequently, this extensive simulation with validation results established the true potential of CsSnI3 absorber with suitable ETLs including ZnO, IGZO, WS2, PCBM, CeO2, and C60 ETLs and CuI as HTL, paving a constructive research path for the photovoltaic industry to fabricate cost-effective, high-efficiency, and nontoxic CsSnI3 PSCs.

20.
RSC Adv ; 13(30): 21044-21062, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448634

RESUMO

Perovskite solar cells (PSCs) have become a possible alternative to traditional photovoltaic devices for their high performance, low cost, and ease of fabrication. Here in this study, the SCAPS-1D simulator numerically simulates and optimizes CsPbBr3-based PSCs under the optimum illumination situation. We explore the impact of different back metal contacts (BMCs), including Cu, Ag, Fe, C, Au, W, Pt, Se, Ni, and Pd combined with the TiO2 electron transport layer (ETL) and CFTS hole transport layer (HTL), on the performance of the devices. After optimization, the ITO/TiO2/CsPbBr3/CFTS/Ni structure showed a maximum power conversion efficiency (PCE or η) of 13.86%, with Ni as a more cost-effective alternative to Au. After the optimization of the BMC the rest of the investigation is conducted both with and without HTL mode. We investigate the impact of changing the thickness and the comparison with acceptor and defect densities (with and without HTL) of the CsPbBr3 perovskite absorber layer on the PSC performance. Finally, we optimized the thickness, charge carrier densities, and defect densities of the absorber, ETL, and HTL, along with the interfacial defect densities at HTL/absorber and absorber/ETL interfaces to improve the PCE of the device; and the effect of variation of these parameters is also investigated both with and without HTL connected. The final optimized configuration achieved a VOC of 0.87 V, JSC of 27.57 mA cm-2, FF of 85.93%, and PCE of 20.73%. To further investigate the performance of the optimized device, we explore the impact of the temperature, shunt resistance, series resistance, capacitance, generation rate, recombination rate, Mott-Schottky, JV, and QE features of both with and without HTL connected. The optimized device offers the best thermal stability at a temperature of 300 K. Our study highlights the potential of CsPbBr3-based PSCs and provides valuable insights for their optimization and future development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...