Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; : 176727, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866361

RESUMO

Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.

2.
Biosensors (Basel) ; 12(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35200315

RESUMO

A fused deposition modeling (FDM) 3D printer extruder was utilized as a micro-furnace draw tower for the direct fabrication of low-cost optical fibers. An air-clad multimode microfiber was drawn from optically transparent polyethylene terephthalate glycol (PETG) filament. A custom-made spooling collection allows for an automatic variation of fiber diameter between ϕ ∼ 72 to 397 µm by tuning the drawing speed. Microstructure imaging as well as the 3D beam profiling of the transmitted beam in the orthogonal axes was used to show good quality, functioning microfiber fabrication with uniform diameter and identical beam profiles for orthogonal axes. The drawn microfiber was used to demonstrate budget smartphone colorimetric-based absorption measurement to detect the degree of adulteration of olive oils with soybean oil.


Assuntos
Impressão Tridimensional , Smartphone , Colorimetria , Fibras Ópticas
3.
IEEE Access ; 9: 163716-163734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35582017

RESUMO

The SARS-Coronavirus-2 (SARS-CoV-2) infectious disease, COVID-19, has spread rapidly, resulting in a global pandemic with significant mortality. The combination of early diagnosis via rapid screening, contact tracing, social distancing and quarantine has helped to control the pandemic. The absence of real time response and diagnosis is a crucial technology shortfall and is a key reason why current contact tracing methods are inadequate to control spread. In contrast, current information technology combined with a new generation of near-real time tests offers consumer-engaged smartphone-based "lab-in-a-phone" internet-of-things (IoT) connected devices that provide increased pandemic monitoring. This review brings together key aspects required to create an entire global diagnostic ecosystem. Cross-disciplinary understanding and integration of both mechanisms and technologies for effective detection, incidence mapping and disease containment in near real-time is summarized. Available measures to monitor and/or sterilize surfaces, next-generation laboratory and smartphone-based diagnostic approaches can be brought together and networked for instant global monitoring that informs Public Health policy. Cloud-based analysis enabling real-time mapping will enable future pandemic control, drive the suppression and elimination of disease spread, saving millions of lives globally. A new paradigm is introduced - scaled and multiple diagnostics for mapping and spreading of a pandemic rather than traditional accumulation of individual measurements. This can do away with the need for ultra-precise and ultra-accurate analysis by taking mass measurements that can relax tolerances and build resilience through networked analytics and informatics, the basis for novel swarm diagnostics. These include addressing ethical standards, local, national and international collaborative engagement, multidisciplinary and analytical measurements and standards, and data handling and storage protocols.

4.
Environ Sci Pollut Res Int ; 24(34): 26521-26533, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28948458

RESUMO

Microwave pyrolysis of oil palm fiber (OPF) with three types of Na-based catalysts was experimentally investigated to produce biochar. Sodium hydroxide (NaOH), sodium chloride (NaCl), and sodium carbonate (Na2CO3) with purity 99.9% were selected for this investigation. Microwave muffle reactor (Model: HAMiab-C1500) with a microwave power controller including a microwave generator was used to perform the microwave pyrolysis. OPF particles were used after removing foreign materials, impurities, and dust. Microwave power ranges from 400 to 900 W, temperature ranges from 450 to 700 °C, and N2 flow rates ranges from 200 to -1200 cm3/min were used along with all three Na-based catalysts for this investigation. Lower microwave power, temperature, and N2 flow rate have been found favorable for higher yield of biochar. NaOH is to be found as the more suitable catalyst than NaCl and Na2CO3 to produce biochar. A maximum biochar yield (51.42 wt%) has been found by using the catalysts NaOH at N2 flow rate of 200 cm3/min. One sample of the biochar (maximum yield without catalysts) was selected for further characterization via thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), BET surface area, Fourier transform infrared spectroscopy (FTIR), and ultimate and proximate analysis. SEM and BET surface area analysis showed the presence of some pores in the biochar. High percentage of carbon (60.24 wt%) was also recorded in the sample biochar. The pores and high percentage of carbon of biochar have significant impact on soil fertilization by increasing the carbon sequestration in the soil. It assists to slow down the decomposition rate of nutrients from soil and therefore enhances the soil quality.


Assuntos
Arecaceae/química , Carvão Vegetal/química , Micro-Ondas , Solo/química , Catálise , Temperatura Alta , Propriedades de Superfície
5.
Analyst ; 142(11): 1953-1961, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28474014

RESUMO

A smartphone fluorimeter capable of time-based fluorescence intensity measurements at various temperatures is reported. Excitation is provided by an integrated UV LED (λex = 370 nm) and detection obtained using the in-built CMOS camera. A Peltier is integrated to allow measurements of the intensity over T = 10 to 40 °C. All components are controlled using a smartphone battery powered Arduino microcontroller and a customised Android application that allows sequential fluorescence imaging and quantification every δt = 4 seconds. The temperature dependence of fluorescence intensity for four emitters (rhodamine B, rhodamine 6G, 5,10,15,20-tetraphenylporphyrin and 6-(1,4,8,11-tetraazacyclotetradecane)2-ethyl-naphthalimide) are characterised. The normalised fluorescence intensity over time of the latter chemosensor dye complex in the presence of Zn2+ is observed to accelerate with an increasing rate constant, k = 1.94 min-1 at T = 15 °C and k = 3.64 min-1 at T = 30 °C, approaching a factor of ∼2 with only a change in temperature of ΔT = 15 °C. Thermally tuning these twist and bend associated rates to optimise sensor approaches and device applications is proposed.

6.
Opt Lett ; 41(23): 5551-5554, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906236

RESUMO

The temperature distribution within extrusion nozzles of three low-cost desktop 3D printers is characterized using fiber Bragg gratings (FBGs) to assess their compatibility as micro-furnaces for optical fiber and taper production. These profiles show remarkably consistent distributions suitable for direct drawing of optical fiber. As proof of principle, coreless optical fibers (φ=30 µm) made from fluorinated acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate glycol (PETG) are drawn. Cutback measurements demonstrate propagation losses as low as α=0.26 dB/cm, which are comparable with standard optical fiber losses with some room for improvement. This work points toward direct optical fiber manufacture of any material from 3D printers.

7.
Opt Lett ; 41(22): 5353-5356, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842130

RESUMO

Multipoint surface plasmon resonance (SPR) excitation using a skew ray within a multimode plastic optical waveguide coated with gold, Au, is reported. The effect of skew rays on the performance of SPR has been studied both theoretically and experimentally. The approach also entails a novel method of measuring the SPR angle that is in agreement with theoretically predicted values.

8.
Opt Lett ; 41(10): 2237-40, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27176971

RESUMO

An optical fiber-based smartphone spectrometer incorporating an endoscopic fiber bundle is demonstrated. The endoscope allows transmission of the smartphone camera LED light to a sample, removing complications from varying background illumination. The reflected spectra collected from a surface or interface is dispersed onto the camera CMOS using a reflecting diffraction grating. A spectral resolution as low as δλ∼2.0 nm over a bandwidth of Δλ∼250 nm is obtained using a slit width, ωslit=0.7 mm. The instrument has vast potential in a number of industrial applications including agricultural produce analysis. Spectral analysis of apples shows straightforward measurement of the pigments anthocyanins, carotenoid, and chlorophyll, all of which decrease with increasing storage time.

9.
Opt Lett ; 40(22): 5156-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26565823

RESUMO

A simple, low-cost, portable, smartphone-based laser beam profiler for characterizing laser beam profiles is reported. The beam profiler utilizes a phosphor silica glass plate to convert UV light into visible (green) light that can be directly imaged onto an existing smartphone CMOS chip and analyzed using a customized app. 3D printing enables the ready fabrication of the instrument package. The beam's diameter, shape, divergence, beam quality factor, and output power are measured for two UV lasers: a CW 244 nm frequency-doubled Ar ion laser and a pulsed 193 nm ArF exciplex laser. The availability of specialized phosphor converters can extend the instrument from the UV to the near infrared and beyond, and the smartphone platform extends the Internet of Things to map laser beam profiles simultaneously in different locations.

10.
Opt Lett ; 40(17): 3966-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26368688

RESUMO

A structured optical fiber is drawn from a 3D-printed structured preform. Preforms containing a single ring of holes around the core are fabricated using filament made from a modified butadiene polymer. More broadly, 3D printers capable of processing soft glasses, silica, and other materials are likely to come on line in the not-so-distant future. 3D printing of optical preforms signals a new milestone in optical fiber manufacture.


Assuntos
Ar , Fibras Ópticas , Impressão Tridimensional , Desenho Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA