Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Electromyogr Kinesiol ; 78: 102912, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38924818

RESUMO

The electromyography (EMG) signal provides insight into neuromuscular activity which is used in medical and technological fields. Traditional needle electrodes and surface electrodes have several drawbacks making them less suitable for portable and long-term use. In contrast, emerging capacitive electrodes offer promising features over the existing electrodes. Yet, the full potential of capacitive electrodes remains untapped due to the lack of comprehensive design optimization for consistently reliable signal quality. This study highlights the complex interplay of factors influencing correlation in capacitive EMG (cEMG) and wet surface EMG (wet sEMG) signals. The study emphasizes the importance of the surface area of capacitive electrodes, muscle force, preprocessing, and sampling frequency in understanding and improving the correlation between cEMG and wet sEMG signals, providing valuable insights for future research and applications in the field. The study reveals that the electrode area has no significant effect on the correlation. However, the correlation significantly depends on the muscle force. In addition, removing artifacts from the cEMG signal increases the correlation, especially for lower force where artifacts are significant. Again, oversampling the EMG signal above 800 Hz does not have any impact on increasing the correlation but the correlation decreases with higher inter-electrode distance (IED). In this research, the highest correlation of 82.89% (normalized-91.62%) between cEMG and sEMG has been achieved for high muscle force with a plate area of 4 cm2. Therefore, the capacitive electrode can be an alternative for EMG signal acquisition.

3.
Plants (Basel) ; 13(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732438

RESUMO

Salinity stress is a major factor affecting the nutritional and metabolic profiles of crops, thus hindering optimal yield and productivity. Recent advances in nanotechnology propose an avenue for the use of nano-fertilizers as a potential solution for better nutrient management and stress mitigation. This study aimed to evaluate the benefits of conventional and nano-fertilizers (nano-Zn/nano-Si) on maize and subcellular level changes in its ionomic and metabolic profiles under salt stress conditions. Zinc and silicon were applied both in conventional and nano-fertilizer-using farms under stress (100 mM NaCl) and normal conditions. Different ions, sugars, and organic acids (OAs) were determined using ion chromatography and inductively coupled plasma mass spectroscopy (ICP-MS). The results revealed significant improvements in different ions, sugars, OAs, and other metabolic profiles of maize. Nanoparticles boosted sugar metabolism, as evidenced by increased glucose, fructose, and sucrose concentrations, and improved nutrient uptake, indicated by higher nitrate, sulfate, and phosphate levels. Particularly, nano-fertilizers effectively limited Na accumulation under saline conditions and enhanced maize's salt stress tolerance. Furthermore, nano-treatments optimized the potassium-to-sodium ratio, a critical factor in maintaining ionic homeostasis under stress conditions. With the growing threat of salinity stress on global food security, these findings highlight the urgent need for further development and implementation of effective solutions like the application of nano-fertilizers in mitigating the negative impact of salinity on plant growth and productivity. However, this controlled environment limits the direct applicability to field conditions and needs future research, particularly long-term field trials, to confirm such results of nano-fertilizers against salinity stress and their economic viability towards sustainable agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA