Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38138001

RESUMO

A novel cellulose microfibril swelling (Cms) gene of Bacillus sp. AY8 was successfully cloned and sequenced using a set of primers designed based on the conserved region of the gene from the genomic database. The molecular cloning of the Cms gene revealed that the gene consisted of 679 bp sequences encoding 225 amino acids. Further in silico analysis unveiled that the Cms gene contained the NlpC/P60 conserved region that exhibited a homology of 98% with the NlpC/P60 family proteins found in both the strains, Burkholderialata sp. and Burkholderia vietnamiensis. The recombinant Cms enzyme had a significant impact on the reduction of crystallinity indices (CrI) of various substrates including a 3%, a 3.97%, a 4.66%, and a substantial 14.07% for filter paper, defatted cotton fiber, avicel, and alpha cellulose, respectively. Additionally, notable changes in the spectral features were observed among the substrates treated with recombinant Cms enzymes compared to the untreated control. Specifically, there was a decrease in band intensities within the spectral regions of 3000-3450 cm-1, 2900 cm-1, 1429 cm-1, and 1371 cm-1 for the treated filter paper, cotton fiber, avicel, and alpha cellulose, respectively. Furthermore, the recombinant Cms enzyme exhibited a maximum cellulose swelling activity at a pH of 7.0 along with a temperature of 40 °C. The molecular docking data revealed that ligand molecules, such as cellobiose, dextrin, maltose 1-phosphate, and feruloyated xyloglucan, effectively bonded to the active site of the Cms enzyme. The molecular dynamics simulations of the Cms enzyme displayed stable interactions with cellobiose and dextrin molecules up to 100 ns. It is noteworthy to mention that the conserved region of the Cms enzyme did not match with those of the bioadditives like expansins and swollenin proteins. This study is the initial report of a bacterial cellulose microfibril swellase enzyme, which could potentially serve as an additive to enhance biofuel production by releasing fermentable sugars from cellulose.

2.
Sci Total Environ ; 904: 166704, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657552

RESUMO

Application of greener pretreatment technology using robust ligninolytic bacteria for short duration to deconstruct rice straw and enhance bioethanol production is currently lacking. The objective of this study is to characterize three bacterial strains isolated from the milieux of cow rumen and forest soil and explore their capabilities of breaking down lignocellulose - an essential process in bioethanol production. Using biochemical and genomic analyses these strains were identified as Bacillus sp. HSTU-bmb18, Bacillus sp. HSTU-bmb19, and Citrobacter sp. HSTU-bmb20. Genomic analysis of the strains unveiled validated model hemicellulases, multicopper oxidases, and pectate lyases. These enzymes exhibited interactions with distinct lignocellulose substrates, further affirmed by their stability in molecular dynamic simulations. A comprehensive expression of ligninolytic pathways, including ß-ketoadipate, phenyl acetate, and benzoate, was observed within the HSTU-bmb20 genome. The strains secreted approximately 75-82 U/mL of cellulase, xylase, pectinase, and lignin peroxidase. FT-IR analysis of the bacterial treated rice straw fibers revealed that the intensity of lignin-related peaks decreased, while cellulose-related peaks sharpened. The values of crystallinity index for the untreated control and the treated rice straw with either HSTU-bmb18, or HSTU-bmb19, or HSTU-bmb20 were recorded to be 34.48, 28.49, 29.36, 31.75, respectively, which are much higher than that of 13.53 noted for those treated with the bacterial consortium. The ratio of fermentable cellulose in rice straw increased by 1.25-, 1.79-, 1.93- and 2.17-fold following treatments with HSTU-bmb18, HSTU-bmb20, HSTU-bmb19, and a mixed consortium of these three strains, respectively. These aggregative results suggested a novel model for rice straw deconstruction utilizing hydrolytic enzymes of the consortium, revealing superior efficacy compared to individual strains, and advancing cost-effective, affordable, and sustainable green technology.


Assuntos
Bacillus , Oryza , Animais , Bovinos , Lignina/metabolismo , Oryza/química , Rúmen , Espectroscopia de Infravermelho com Transformada de Fourier , Celulose/química , Bacillus/metabolismo , Hidrólise
3.
Arch Microbiol ; 205(6): 231, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165147

RESUMO

Endophytic biostimulant with pesticide bioremediation activities may reduce agrochemicals application in rice cultivation. The present study evaluates diazinon-degrading endophytic bacteria, isolated from rice plants grown in the fields with pesticide amalgamation, leading to increased productivity in high-yielding rice plants. These endophytes showed capabilities of decomposing diazinon, confirmed by FT-IR spectra analysis. Growth promoting activities of these endophytes can be attributed to their abilities to produce an increased level of IAA content and to demonstrate high level ACC-deaminase activities. Furthermore, these endophytes demonstrated enhanced level of extracellular cellulase, xylanase, amylase, protease and lignin degrading activities. Five genera including Enterobacter, Pantoea, Shigella, Acinetobacter, and Serratia, are represented only by the leaves, while four genera such as Enterobacter, Escherichia, Kosakonia, and Pseudomonas are represented only by the shoots. Five genera including, Klebsiella, Enterobacter, Pseudomonas, Burkholderia, and Bacillus are represented only by the roots of rice plants. All these strains demonstrated cell wall hydrolytic enzyme activities, except pectinase. All treatments, either individual strains or consortia of strains, enhanced rice plant growth at germination, seedling, vegetative and reproductive stages. Among four (I-IV) consortia, consortium-III generated the maximum rice yield under 70% lower doses of urea compared to that of control (treated with only fertilizer). The decoded genome of Klebsiella sp. HSTU-F2D4R revealed nif-cluster, chemotaxis, phosphates, biofilm formation, and organophosphorus insecticide-degrading genes. Sufficient insecticide-degrading proteins belonging to strain HSTU-F2D4R had interacted with diazinon, confirmed in molecular docking and formed potential catalytic triads, suggesting the strains have bioremediation potential with biofertilizer applications in rice cultivation.


Assuntos
Inseticidas , Oryza , Diazinon/metabolismo , Inseticidas/metabolismo , Klebsiella/genética , Ureia/metabolismo , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos Organofosforados , Enterobacter/genética , Genes Reguladores , Endófitos , Raízes de Plantas/microbiologia
4.
Front Microbiol ; 13: 1060554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523825

RESUMO

The chlorpyrifos-mineralizing rice root endophyte Enterobacter sp. HSTU-ASh6 strain was identified, which enormously enhanced the growth of tomato plant under epiphytic conditions. The strain solubilizes phosphate and grew in nitrogen-free Jensen's medium. It secreted indole acetic acid (IAA; 4.8 mg/mL) and ACC deaminase (0.0076 µg/mL/h) and hydrolyzed chlorpyrifos phosphodiester bonds into 3,5,6-trichloro-2-pyridinol and diethyl methyl-monophosphate, which was confirmed by Gas Chromatography - Tandem Mass Spectrometry (GC-MS/MS) analysis. In vitro and in silico (ANI, DDH, housekeeping genes and whole genome phylogenetic tree, and genome comparison) analyses confirmed that the strain belonged to a new species of Enterobacter. The annotated genome of strain HSTU-ASh6 revealed a sets of nitrogen-fixing, siderophore, acdS, and IAA producing, stress tolerance, phosphate metabolizing, and pesticide-degrading genes. The 3D structure of 28 potential model proteins that can degrade pesticides was validated, and virtual screening using 105 different pesticides revealed that the proteins exhibit strong catalytic interaction with organophosphorus pesticides. Selected docked complexes such as α/ß hydrolase-crotoxyphos, carboxylesterase-coumaphos, α/ß hydrolase-cypermethrin, α/ß hydrolase-diazinon, and amidohydrolase-chlorpyrifos meet their catalytic triads in visualization, which showed stability in molecular dynamics simulation up to 100 ns. The foliar application of Enterobacter sp. strain HSTU-ASh6 on tomato plants significantly improved their growth and development at vegetative and reproductive stages in fields, resulting in fresh weight and dry weight was 1.8-2.0-fold and 1.3-1.6-fold higher in where urea application was cut by 70%, respectively. Therefore, the newly discovered chlorpyrifos-degrading species Enterobacter sp. HSTU-ASh6 could be used as a smart biofertilizer component for sustainable tomato cultivation.

5.
Arch Microbiol ; 204(3): 199, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35220488

RESUMO

This study was aimed to evaluate eggplant's growth-enhancing activity of chlorpyrifos and diazinon-degrading endophytic and rhizospheric soil bacteria isolated from cauliflower and tomato roots and the rhizospheric soil of rice roots, respectively. The identified endophytes belong to the Acinetobacter, Enterobacter and Klebsiella genera, while rhizospheric soil isolates belong to Pantoea, Acinetobacter, Kosakonia, Morganella, Enterobacter, and Klebsiella genera with species variation and genetic distances. All the strain's consumed 100% (50 mg/5 mL) chlorpyrifos and diazinon after 14 days of exposure, except for Pantoea sp. HSTU-Sny4 (84%) and Kosakonia sp. HSTU-ASn39 (42%). The strain's exhibited N-fixation, P-solubilization, indole-3-acetic acid (IAA), and ACC-deaminase production capabilities. The individual strain's and consortium treatment enhanced eggplant growth at germination, seedling, vegetative and reproductive stages. Plant growth-promoting genes, e.g., nif-cluster, chemotaxis, phosphates, sulfur, abiotic stress, chemotaxis, biofilm formation and organophosphorus insecticide-degrading genes were annotated in Klebsiella sp. HSTU-Sny5 and Morganella sp. HSTU-ASny43 genomes. Importantly, the mixed consortium supplemented with 40% urea-treated eggplants demonstrated similar growth parameters compared to the 100% urea eggplants. Plenty of insecticide-degrading proteins belonged to HSTU-Sny5 and HSTU-ASny43 strain's and had interacted with 100 different insecticides as confirmed in virtual screening. This research has a significant role in reducing the application of chemical fertilizer and bioremediation of pesticides in agriculture.


Assuntos
Inseticidas , Solanum melongena , Endófitos , Inseticidas/metabolismo , Inseticidas/farmacologia , Compostos Organofosforados/metabolismo , Raízes de Plantas/microbiologia , Solo , Solanum melongena/metabolismo
6.
Braz J Microbiol ; 53(1): 99-130, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088248

RESUMO

Klebsiella variicola is generally known as endophyte as well as lignocellulose-degrading strain. However, their roles in goat omasum along with lignocellulolytic genetic repertoire are not yet explored. In this study, five different pectin-degrading bacteria were isolated from a healthy goat omasum. Among them, a new Klebsiella variicola strain HSTU-AAM51 was identified to degrade lignocellulose. The genome of the HSTU-AAM51 strain comprised 5,564,045 bp with a GC content of 57.2% and 5312 coding sequences. The comparison of housekeeping genes (16S rRNA, TonB, gyrase B, RecA) and whole-genome sequence (ANI, pangenome, synteny, DNA-DNA hybridization) revealed that the strain HSTU-AAM51 was clustered with Klebsiella variicola strains, but the HSTU-AAM51 strain was markedly deviated. It consisted of seventeen cellulases (GH1, GH3, GH4, GH5, GH13), fourteen beta-glucosidase (2GH3, 7GH4, 4GH1), two glucosidase, and one pullulanase genes. The strain secreted cellulase, pectinase, and xylanase, lignin peroxidase approximately 76-78 U/mL and 57-60 U/mL, respectively, when it was cultured on banana pseudostem for 96 h. The catalytically important residues of extracellular cellulase, xylanase, mannanase, pectinase, chitinase, and tannase proteins (validated 3D model) were bound to their specific ligands. Besides, genes involved in the benzoate and phenylacetate catabolic pathways as well as laccase and DiP-type peroxidase were annotated, which indicated the strain lignin-degrading potentiality. This study revealed a new K. variicola bacterium from goat omasum which harbored lignin and cellulolytic enzymes that could be utilized for the production of bioethanol from lignocelluloses.


Assuntos
Cabras , Omaso , Animais , Klebsiella , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...