Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Neurosci ; 15(1): 20220343, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38979518

RESUMO

Spinal cord injury (SCI) is a severe medical condition that affects millions of people worldwide each year. In Iran, an estimated 9 out of every 100,000 individuals experience traumatic SCI occurrences. Long-term disabilities and comorbidities stemming from SCI often necessitate multiple therapeutic interventions. The aim of this study is to evaluate the morbidity in Iranian SCI patients. In this study, a four-step process was used to select, extract, analyze, and synthesize relevant literature. The search covered 750 records from five databases, resulting in 25 articles included in the review. These articles, published between 2000 and 2023, utilized cross-sectional, qualitative, or cohort designs. The findings explored the prevalence, risk factors, and consequences of comorbidities associated with SCI, categorized into four themes: physical, sexual, psychological, and metabolic morbidity. Physical morbidity refers to medical conditions or complications affecting body functions or structures in SCI patients. The most frequently reported cases include pressure ulcers, pain, osteoporosis, fractures, impaired pulmonary function, renal failure, and obesity. Metabolic morbidity includes conditions such as vitamin D deficiency and cardiometabolic risk factors. Psychological morbidity encompasses depression, anxiety, and adjustment disorders. Sexual morbidity refers to conditions or complications affecting the sexual function or satisfaction of SCI patients. This narrative literature review offers a comprehensive examination of various aspects of SCI in Iranian patients. The review identifies numerous challenges and difficulties faced by SCI patients while also highlighting protective factors that can improve their well-being. Additionally, the review acknowledges gaps and limitations within the current literature and suggests possible avenues for future research.

2.
Dev Psychobiol ; 66(6): e22514, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38922890

RESUMO

Repeated exposure to abused drugs leads to reorganizing synaptic connections in the brain, playing a pivotal role in the relapse process. Additionally, recent research has highlighted the impact of parental drug exposure before gestation on subsequent generations. This study aimed to explore the influence of parental morphine exposure 10 days prior to pregnancy on drug-induced locomotor sensitization. Adult male and female Wistar rats were categorized into morphine-exposed and control groups. Ten days after their last treatment, they were mated, and their male offspring underwent morphine, methamphetamine, cocaine, and nicotine-induced locomotor sensitization tests. The results indicated increased locomotor activity in both groups after drug exposure, although the changes were attenuated in morphine and cocaine sensitization among the offspring of morphine-exposed parents (MEPs). Western blotting analysis revealed altered levels of D2 dopamine receptors (D2DRs) in the prefrontal cortex and nucleus accumbens of the offspring from MEPs. Remarkably, despite not having direct in utero drug exposure, these offspring exhibited molecular alterations affecting morphine and cocaine-induced sensitization. The diminished sensitization to morphine and cocaine suggested the development of a tolerance phenotype in these offspring. The changes in D2DR levels in the brain might play a role in these adaptations.


Assuntos
Cocaína , Locomoção , Morfina , Núcleo Accumbens , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar , Receptores de Dopamina D2 , Animais , Feminino , Morfina/farmacologia , Morfina/administração & dosagem , Masculino , Cocaína/farmacologia , Cocaína/administração & dosagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Locomoção/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Entorpecentes/farmacologia , Exposição Paterna/efeitos adversos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia
3.
Drug Dev Res ; 85(2): e22177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528637

RESUMO

Botulinum neurotoxins (BoNTs), derived from Clostridium botulinum, have been employed to treat a range of central and peripheral neurological disease. Some studies indicate that BoNT may be beneficial for pain conditions as well. It has been hypothesized that BoNTs may exert their analgesic effects by preventing the release of pain-related neurotransmitters and neuroinflammatory agents from sensory nerve endings, suppressing glial activation, and inhibiting the transmission of pain-related receptors to the neuronal cell membrane. In addition, there is evidence to suggest that the central analgesic effects of BoNTs are mediated through their retrograde axonal transport. The purpose of this review is to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions. Most of the studies reviewed in this article were conducted using BoNT/A. The PubMed database was searched from 1995 to December 2022 to identify relevant literature.


Assuntos
Analgésicos , Dor , Humanos , Dor/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Neurônios , Células Cultivadas
4.
Eur J Pharm Biopharm ; 193: 175-186, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926270

RESUMO

This study aims to overcome physiological barriers and increase the therapeutic index for the treatment of glioblastoma (GBM) tumors by using Paclitaxel (PTX) loaded Poly(lactic co-glycolic acid) nanoparticles (PTX-PLGA-NPs) and Doxorubicin (DOX) loaded Poly (lactic co-glycolic acid) nanoparticles (DOX-PLGA-NPs). The hydrodynamic diameter of nanoparticles (NPs) was characterized by dynamic light scattering (DLS) which was 94 ± 4 nm and 133 ± 6 nm for DOX-PLGA-NPs, and PTX-PLGA-NPs, respectively. The zeta potential for DOX-PLGA-NPs and PTX-PLGA-NPs were -15.2 ± 0.18 mV and -17.3 ± 0.34 mV, respectively. The cytotoxicity of PTX-PLGA-NPs and DOX-PLGA-NPs was augmented compared to DOX and PTX on C6 GBM cells. The Lactate dehydrogenase (LDH) tests for various formulations were carried out. The results indicated that the amount of released LDH was 262 ± 7.84 U.L-1 at the concentration of 2 mg/mL in the combination therapy, which was much higher than other groups (DOX-PLGA-NPs (210 ± 6.92 U.L-1), PTX-PLGA-NPs (201 ± 8.65 U.L-1), DOX (110 ± 9.81 U.L-1), PTX (95 ± 5.02 U.L-1) and PTX + DOX (67 ± 4.89 U.L-1)). MRI results of the combination therapy of PTX-PLGA-NPs and DOX-PLGA-NPs indicated that GBM tumor size decreased considerably compared to the other formulations. Also, combination therapy of PTX-PLGA-NPs and DOX-PLGA-NPs demonstrated a longer median survival of more than 80 days compared to PTX (38 days), DOX (37 days) and PTX + DOX (48 days), PTX-NPs (58 days) and DOX-NPs (62 days). The results of locomotion, body weight, rearing and grooming assays indicated that combination therapy of PTX-PLGA-NPs and DOX-PLGA-NPs had the most positive effect on the movements of rats compared to the other formulations.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Ratos , Animais , Paclitaxel , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico , Ácido Láctico , Linhagem Celular Tumoral , Doxorrubicina , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia
5.
Drug Dev Res ; 84(8): 1739-1750, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769152

RESUMO

Glioblastoma multiforme (GBM) is the most invasive form of primary brain astrocytoma, resulting in poor clinical outcomes. Herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy is considered a promising strategy for GBM treatment. Since Connexin43 (Cx43) expression is reduced in GBM cells, increasing Cx43 levels could enhance the effectiveness of gene therapy. The present study aims to examine the impact of fluoxetine on HSV-TK/GCV gene therapy in human GBM cells using human olfactory ensheathing cells (OECs) as vectors. The effect of fluoxetine on Cx43 levels was assessed using the western blot technique. GBM-derived astrocytes and OECs-TK were Cocultured, and the effect of fluoxetine on the Antitumor effect of OEC-TK/GCV gene therapy was evaluated using MTT assay and flow cytometry. Our results showed that fluoxetine increased Cx43 levels in OECs and GBM cells and augmented the killing effect of OECs-TK on GBM cells. Western blot data revealed that fluoxetine enhanced the Bax/Bcl2 ratio and the levels of cleaved caspase-3 in the coculture of OECs-TK and GBM cells. Moreover, flow cytometry data indicated that fluoxetine increased the percentage of apoptotic cells in the coculture system. This study suggests that fluoxetine, by upregulating Cx43 levels, could strengthen the Antitumor effect of OEC-TK/GCV gene therapy on GBM cells.


Assuntos
Ganciclovir , Glioblastoma , Humanos , Ganciclovir/farmacologia , Ganciclovir/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Conexina 43/genética , Conexina 43/metabolismo , Conexina 43/uso terapêutico , Timidina Quinase/genética , Timidina Quinase/metabolismo , Timidina Quinase/uso terapêutico , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Regulação para Cima , Terapia Genética , Antivirais/farmacologia
6.
Pathol Res Pract ; 245: 154427, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37028110

RESUMO

Glioblastoma (GBM) remains the most lethal brain tumor without any curative treatment. Exosomes can mediate cell-to-cell communication, and may function as a new type of targeted therapy. In this study, the therapeutic benefits of exosomes generated by U87 cells treated with curcumin and/or temozolomide were investigated. The cells were cultured and treated with temozolomide (TMZ), curcumin (Cur), or their combination (TMZ+Cur). Exosomes were isolated with a centrifugation kit and characterized using DLS, SEM, TEM, and Western blotting. The levels of exosomal BDNF and TNF-α were measured. Naïve U87 cells were treated with the isolated exosomes, and the effects on apoptosis-related proteins HSP27, HSP70, HSP90, and P53 were assessed. All exosomes, Cur-Exo, TMZ-Exo, and TMZ+Cur-Exo increased cleaved caspase 3, Bax, and P53 proteins, while reducing HSP27, HSP70, HSP90, and Bcl2 proteins. Moreover all treatment groups increased apoptosis in naïve U87 recipient cells. Exosomes released from treated U87 cells had less BDNF and more TNF-α compared to exosomes released from naive U87 cells. In conclusion, we showed for the first time that exosomes released from drug-treated U87 cells could be a new therapeutic approach in glioblastoma, and could reduce the side effects produced by drugs alone. This concept needs to be further examined in animal models before clinical trials could be considered.


Assuntos
Neoplasias Encefálicas , Curcumina , Exossomos , Glioblastoma , Glioma , Animais , Temozolomida/farmacologia , Glioblastoma/patologia , Curcumina/farmacologia , Exossomos/metabolismo , Proteína Supressora de Tumor p53 , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glioma/metabolismo , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos Alquilantes/farmacologia
7.
Front Cell Neurosci ; 16: 993019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505513

RESUMO

Bone-marrow mesenchymal stem cells (BM-MSCs) have not yet proven any significant therapeutic efficacy in spinal cord injury (SCI) clinical trials, due to the hostile microenvironment of the injured spinal cord at the acute phase. This study aims to modulate the inflammatory milieu by lipopolysaccharide (LPS) and granulocyte colony-stimulating factor (G-CSF) to improve the BM-MSCs therapy. For this purpose, we determined the optimum injection time and sub-toxic dosage of LPS following a T10 contusion injury. Medium-dose LPS administration may result in a local anti-inflammatory beneficial role. This regulatory role is associated with an increase in NF-200-positive cells, significant tissue sparing, and improvement in functional recovery compared to the SCI control group. The second aim was to examine the potential ability of LPS and LPS + G-CSF combination therapy to modulate the lesion site before BM-MSC (1 × 105 cells) intra-spinal injection. Our results demonstrated combination therapy increased potency to enhance the anti-inflammatory response (IL-10 and Arg-1) and decrease inflammatory markers (TNF-α and CD86) and caspase-3 compared to BM-MSC monotherapy. Histological analysis revealed that combination groups displayed better structural remodeling than BM-MSC monotherapy. In addition, Basso-Beattie-Bresnahan (BBB) scores show an increase in motor recovery in all treatment groups. Moreover, drug therapy shows faster recovery than BM-MSC monotherapy. Our results suggest that a sub-toxic dose of LPS provides neuroprotection to SCI and can promote the beneficial effect of BM-MSC in SCI. These findings suggest that a combination of LPS or LPS + G-CSF prior BM-MSC transplantation is a promising approach for optimizing BM-MSC-based strategies to treat SCI. However, because of the lack of some methodological limitations to examine the survival rate and ultimate fate of transplanted BM-MSCs followed by LPS administration in this study, further research needs to be done in this area. The presence of only one-time point for evaluating the inflammatory response (1 week) after SCI can be considered as one of the limitations of this study. We believed that the inclusion of additional time points would provide more information about the effect of our combination therapy on the microglia/macrophage polarization dynamic at the injured spinal cord.

8.
Front Pharmacol ; 13: 932487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339604

RESUMO

Ion disturbances are among the most remarkable deficits in spinal cord injury (SCI). GABA is an integral part of neural interaction. Action of the GABAA receptor depends on the amount of intracellular chloride. Homeostasis of chloride is controlled by two co-transporters, NKCC1 and KCC2. Previous studies revealed that NKCC1 are disturbed in SCI. In this study, NKCC1 is highly expressed in the epicenter of the lesioned spinal cord at 3 hours after induction of the lesion and reached the peak around 6 hours after SCI. Bumetanide (2 and 4 mg/day), as a specific NKCC1 inhibitor, was used at 3 hours post SCI for 28 days. The functional recovery outcomes were measured by the Basso-Beattie-Bresnahan (BBB) locomotor rating scale, ladder walking test, and hot plate test. The rats that received bumetanide 4 mg/day exhibited improved recovery of locomotor function, reduction of NKCC1 gene expression, and upregulation of GAP protein levels 28 days post SCI. Histological tissue evaluations confirmed bumetanide's neuroprotective and regenerative effects. This study provides novel evidence for the benefits of bumetanide in early administration after SCI.

9.
Life Sci ; 311(Pt A): 121132, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36309223

RESUMO

AIMS: Glioblastoma multiforme (GBM) is the most malignant type of brain tumor resistant to current treatments. Recently, suicide gene therapy with the Herpex Simplex Virus thymidine kinase (HSV-tk) gene has been developed with high therapeutic potency, even in clinical trials. The primary challenge to establishing a gene therapy strategy is how to transfer the desired gene into the tumor site. The olfactory ensheathing cells (OECs) secreting neurotropic and anti-inflammatory factors have a high migration capacity, making them applicable for gene therapy. We examined our new construct OECs containing the HSV-tk gene for their migration and tumoricidal ability in animal models of GBM. MAIN METHODS: Isolated OECs were transduced by the HSV-tk gene (OEC-tks). OEC-tks or PBS were injected ipsilaterally or contralaterally into the tumor-bearing rats, followed by gancyclovir (GCV) or PBS administration. At the end of the treatment, tumor size, apoptosis, and animal survival were assessed. KEY FINDINGS: Our findings demonstrated that tumor size was significantly decreased in OEC-tks ipsilateral and contralateral groups, followed by GCV injections. Furthermore, both groups' pro-apoptotic protein and gene expressions were up-regulated, whereas Bcl-2 protein expression was down-regulated. Besides, apoptosis in the OEC-tks ipsilateral/GCV group was higher in the intratumoral region, and this percentage was higher in the OEC-tks contralateral/GCV group in the peritumoral region. Interestingly, our new construct increased animal survival rate and reduced body weight loss. SIGNIFICANCE: OECs could serve as a novel carrier for gene therapy, have a high migration capability to the GBM and eventually suppress tumor progression.


Assuntos
Glioblastoma , Ratos , Animais , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Timidina Quinase/genética , Células Tumorais Cultivadas , Terapia Genética , Ganciclovir/farmacologia , Ganciclovir/uso terapêutico , Simplexvirus/genética , Simplexvirus/metabolismo , Antivirais/uso terapêutico
10.
Drug Dev Res ; 83(6): 1425-1433, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35808942

RESUMO

Tramadol is a synthetic opioid with centrally acting analgesic activity that alleviates moderate to severe pain and treats withdrawal symptoms of the other opioids. Like other opioid drugs, tramadol abuse has adverse effects on central nervous system components. Chronic administration of tramadol induces maladaptive plasticity in brain structures responsible for cognitive function, such as the hippocampus. However, the mechanisms by which tramadol induces these alternations are not entirely understood. Here, we examine the effect of tramadol on apoptosis and synaptogenesis of hippocampal neuronal in vitro. First, the primary culture of hippocampal neurons from neonatal rats was established, and the purity of the neuronal cells was verified by immunofluorescent staining. To evaluate the effect of tramadol on neuronal cell viability MTT assay was carried out. The western blot analysis technique was performed for the assessment of apoptosis and synaptogenesis markers. Results show that chronic exposure to tramadol reduces cell viability of neuronal cells and naloxone reverses this effect. Also, the level of caspase-3 significantly increased in tramadol-exposed hippocampal neurons. Moreover, tramadol downregulates protein levels of synaptophysin and stathmin as synaptogenesis markers. Interestingly, the effects of tramadol were abrogated by naloxone treatment. These findings suggest that tramadol can induce neurotoxicity in hippocampal neuronal cells, and this effect was partly mediated through opioid receptors.


Assuntos
Tramadol , Analgésicos Opioides/efeitos adversos , Animais , Apoptose , Hipocampo/metabolismo , Naloxona/farmacologia , Neurônios , Ratos , Receptores Opioides/metabolismo , Tramadol/farmacologia
11.
Mol Ther Oncolytics ; 26: 76-87, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35795095

RESUMO

Glioblastoma multiforme (GBM) is the most invasive form of primary brain astrocytoma. Gene therapy using the herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) is a new strategy for GBM treatment. As the connexin 43 (Cx43) levels are downregulated in GBM cells, it seems that the upregulation of Cx43 could improve the efficacy of the gene therapy. This study aims to evaluate the effect of clenbuterol hydrochloride (Cln) as a ß2-adrenergic receptor agonist on HSV-TK/GCV gene therapy efficacy in human GBM cells using olfactory ensheathing cells (OECs) as vectors. The lentivirus containing the thymidine kinase gene was transduced to OECs and the effective dose of GCV on cells was measured by MTT assay. We found that Cln upregulated Cx43 expression in human GBM cells and OECs and promoted the cytotoxic effect of GCV on the co-culture cells. Western blot results showed that Cln increased the cleaved caspase-3 expression and the Bax/Bcl2 ratio in the co-culture of GBM cells and OEC-TK. Also, the flow cytometry results revealed that Cln increased apoptosis in the co-culture of GBM cells and OEC-TK cells. This study showed that Cln via upregulation of Cx43 expression could enhance the bystander effect of HSVTK-GCV gene therapy in human GBM cells.

12.
Mol Ther Nucleic Acids ; 28: 758-791, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35664698

RESUMO

Exosomes are small extracellular vesicles with sizes ranging from 30-150 nanometers that contain proteins, lipids, mRNAs, microRNAs, and double-stranded DNA derived from the cells of origin. Exosomes can be taken up by target cells, acting as a means of cell-to-cell communication. The discovery of these vesicles in body fluids and their participation in cell communication has led to major breakthroughs in diagnosis, prognosis, and treatment of several conditions (e.g., cancer). However, conventional isolation and evaluation of exosomes and their microRNA content suffers from high cost, lengthy processes, difficult standardization, low purity, and poor yield. The emergence of microfluidics devices with increased efficiency in sieving, trapping, and immunological separation of small volumes could provide improved detection and monitoring of exosomes involved in cancer. Microfluidics techniques hold promise for advances in development of diagnostic and prognostic devices. This review covers ongoing research on microfluidics devices for detection of microRNAs and exosomes as biomarkers and their translation to point-of-care and clinical applications.

13.
Life Sci ; 302: 120505, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358594

RESUMO

AIMS: Recent studies show targeted therapy of new pyrazino[1,2-a]benzimidazole derivatives with COX-II inhibitory effects on different cancer cells. This study aimed to investigate 2D cell culture and 3D spheroid formation of glioblastoma multiforme (GBM) cells using a microfluidic device after exposure to these compounds. MAIN METHODS: After isolating astrocytes from human GBM samples, IC50 of 2,6-dimethyl pyrazino[1,2-a]benzimidazole (L1) and 3,4,5-trimethoxy pyrazino[1,2-a]benzimidazole (L2) were determined as 13 µM and 85 µM, respectively. Then, in all experiments, cells were exposed to subtoxic concentrations of L1 (6.5 µM) and L2 (42.5 µM), which were ½IC50. In the following, in two phases, cell cycle, migration, and gene expression through 2D cell culture and tumor spheroid formation ability using a 3D-printed microfluidic chip were assessed. KEY FINDINGS: The obtained results showed that both compounds have positive effects in reducing G2/M cell population and GBM cell migration. Furthermore, real-time gene expression data showed that L1 and L2 significantly impact the upregulation of P21 and P53 and down-regulation of cyclin D1, MMP2, and MMP9. On the other hand, GBM spheroids exposed to L1 and L2 become smaller with fewer live cells. SIGNIFICANCE: Our data on human isolated astrocyte cells in 2D and 3D cell culture conditions showed that L1 and L2 compounds could reduce GBM cells' invasion by controlling gene expressions associated with migration and proliferation. Moreover, designing microfluidic platform and related cell culture protocols facilitates the broad screening of 3D multicellular tumor spheroids derived from GBM tumor biopsies and provides effective drug development for brain gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Impressão Tridimensional , Dispositivos Lab-On-A-Chip , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico
14.
Neuropeptides ; 92: 102228, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35101843

RESUMO

Damage to the spinal cord triggers a local complex inflammatory reaction that results in irreversible impairments or complete loss of motor function. The evidence suggested that inhibiting the pro-inflammatory macrophage/microglia (M1 subsets) and stimulating the anti-inflammatory macrophage/microglia (M2 subsets) are potential strategies for the treatment of neuroinflammation-related diseases. We evaluated the potentially protective effect of Ac-SDKP as an endogenous tetrapeptide on rat spinal cord injury (SCI). Wistar rats were subjected to a weight-drop contusion model and were treated with Ac-SDKP (0.8 mg/kg) given subcutaneously once a day for 7 days starting at two clinically relevant times, at 2 h or 6 h post-injury. The effect of Ac-SDKP was assessed by motor functional analysis, real-time PCR (CD86 and CD206 mRNA), western blot (caspase-3), ELISA (TNF-a, IL-10), and histological analysis (toluidine blue staining). Ac-SDKP improved locomotor recovery and rescue motor neuron loss after SCI. Moreover, a decreased in TNF-a level as well as caspase 3 protein levels occurred in the lesion epicenter of the spinal cord following treatment. In addition, CD206 mRNA expression level increased significantly in Ac-SDKP treated rats compared with SCI. Together these data suggest that Ac-SDKP might be a novel immunomodulatory drug. It may be beneficial for the treatment of SCI with regards to increasing CD206 gene expression and suppress inflammatory cytokine to improve motor function and reducing histopathological lesion.


Assuntos
Traumatismos da Medula Espinal , Animais , Oligopeptídeos/farmacologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
15.
Mol Ther Oncolytics ; 24: 262-287, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35071748

RESUMO

Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.

16.
MAGMA ; 35(1): 3-15, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34878619

RESUMO

OBJECTIVES: We demonstrated a novel metabolic method based on sequential administration of 5-aminolevulinic acid (ALA) and iron supplement, and ferric ammonium citrate (FAC), for glioblastoma multiforme (GBM) detection using R2' and quantitative susceptibility mapping (QSM). MATERIALS AND METHODS: Intra-cellular iron accumulation in glioblastoma cells treated with ALA and/or FAC was measured. Cell phantoms containing glioblastoma cells and Wistar rats bearing C6 glioblastoma were imaged using a 3 T MRI scanner after sequential administration of ALA and FAC. The relaxivity and QSM analysis were performed on the images. RESULTS: The intra-cellular iron deposition was significantly higher in the glioma cells with sequential treatment of ALA and FAC for 6 h compared to those treated with the controls. The relaxivity and magnetic susceptibility values of the glioblastoma cells and rat brain tumors treated with ALA + FAC (115 ± 5 s-1 for R2', and 0.1 ± 0.02 ppm for magnetic susceptibility) were significantly higher than those treated with the controls (55 ± 18 (FAC), 45 ± 15 (ALA) s-1 for R2', p < 0.05, and 0.03 ± 0.03 (FAC), 0.02 ± 0.02 (ALA) ppm for magnetic susceptibility, p < 0.05). DISCUSSION: Sequential administration of ALA and iron supplements increases the iron deposition in glioblastoma cells, enabling clinical 3 T MRI to detect GBM using R2' or QSM.


Assuntos
Glioblastoma , Ácido Aminolevulínico , Animais , Glioblastoma/diagnóstico por imagem , Ferro , Imageamento por Ressonância Magnética/métodos , Ratos , Ratos Wistar
17.
J Clin Neurosci ; 81: 477-484, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33222966

RESUMO

BACKGROUND/OBJECTIVE: The current study evaluated the analgesic effects of bumetanide as an adjunctive treatment in managing neuropathic pain following spinal cord injury. The peripheral expression level of Na-K-Cl-cotransporter-1 (NKCC1) and K-Cl-cotransporter-2 (KCC2) genes in polymorphonuclear lymphocytes (PMLs) assessed as a possible biomarker indicating central underlying mechanisms. METHODS: This open-label, single-arm, pilot trial of bumetanide (2 mg/day) is an add-on treatment conducted in 14 SCI patients for 19 weeks. The whole duration consisted of three phases: pre-treatment (1 month), titration (3 weeks), and active treatment (4 months). Ultimately, nine patients completed the study. The primary outcome variables were the endpoint pain score measured by the numeric rating scale (NRS), and the short-form McGill Pain Questionnaire. Secondary endpoints included the Short-Form Health Survey that measures the quality of life. Blood samples were collected and used for determining the expression of NKCC1 and KCC2 genes in transcription and translation levels. RESULTS: Bumetanide treatment significantly reduced average pain intensity according to the NRS and the short form of the McGill Pain Questionnaire scores. The baseline expression of KCC2 protein was low between groups and increased significantly following treatment (P < 0.05). Through the current study, pain improvement accompanied by the more significant mean change from the baseline for the overall quality of life. CONCLUSION: These data might be a piece of preliminary evidence for the analgesic effect of bumetanide on neuropathic pain and could support the potential role of the upregulation of KCC2 protein and involvement of GABAergic disinhibition in producing neuropathic pain.


Assuntos
Bumetanida/uso terapêutico , Neuralgia/tratamento farmacológico , Traumatismos da Medula Espinal/complicações , Adulto , Feminino , Humanos , Masculino , Neuralgia/etiologia , Projetos Piloto , Qualidade de Vida , Membro 2 da Família 12 de Carreador de Soluto/biossíntese , Membro 2 da Família 12 de Carreador de Soluto/efeitos dos fármacos , Simportadores/efeitos dos fármacos , Simportadores/metabolismo
18.
Int J Biol Macromol ; 162: 1100-1108, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603732

RESUMO

Known as a main neural MAP (microtubule associated protein), tau protein contributes to stabilizing microtubules involved in cellular transmission. Tau dysfunction is mainly associated with neurodegenerative diseases, particularly Alzheimer's disease (AD). In these patients, all the six tau isoforms, which are in hyperphosphorylated form, are first aggregated and then polymerized into neurofibrillary tangles inside the brain. Tau protein detected in cerebrospinal fluid (CSF) is significantly correlated with AD and is well recognized as a hallmark of the disease. Served for detection of analytes of interest, biosensor device comprises a physical transducer and a keen biological recognition component. Qualitative and quantitative evaluations may be performed through analyzation of the data, which is gathered by measurable signals converted from biological reaction. Antibodies, receptors, microorganisms, nucleic acids, enzymes, cells and tissues, as well as some biomimetic structures, normally constitute the biosensor biological recognition part. Production of nanobiosensor, which was made possible through several accomplishments in nano- and fabrication technology, opens up new biotechnological horizons in diagnosis of multiple diseases. In recent years, many researches have been focused on developing novel and effective tau protein biosensors for rapid and accurate detection of AD. In this review, tau protein function and correlation with AD as well as the eminent research on developing nanobiosensor based on optical, electrochemical and piezoelectric approaches will be highlighted.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Técnicas Biossensoriais , Proteínas tau/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Humanos
19.
J Mol Neurosci ; 70(10): 1451-1460, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32506304

RESUMO

Glioblastoma multiforme (GBM) is described as an invasive astrocytic tumor in adults. Despite current standard treatment approaches, the outcome of GBM remains unfavorable. The downregulation of connexin 43 (Cx43) expression is one of the molecular transformations in GBM cells. The Cx43 levels and subsequently gap junctional intercellular communication (GJIC) have an important role in the efficient transfer of cytotoxic drugs to whole tumor cells. As shown in our previous study, the stimulation of the ß2-adrenergic receptor (ß2-AR) leads to the modulation of Cx43 expression level in the GBM cell line. Here we further examine the effect of clenbuterol hydrochloride as a selective ß2-AR agonist on the Cx43 expression in human GBM-derived astrocyte cells and human olfactory ensheathing cells (OECs) as a potent vector for future gene therapy. In this experiment, first we established a primary culture of astrocytes from GBM samples and verified the purity using immunocytofluorescent staining. Western blot analysis was performed to evaluate the Cx43 protein level. Our western blot findings reveal that clenbuterol hydrochloride upregulates the Cx43 protein level in both primary human astrocyte cells and human OECs. Conversely, ICI 118551 as a ß2-AR antagonist inhibits these effects. Moreover, clenbuterol hydrochloride increases the Cx43 expression in primary human astrocyte cells and OECs co-culture systems, and ICI 118551 reverses these effects. To confirm the western blot results, immunocytofluorescent staining was performed to evaluate the ß2-AR agonist effect on Cx43 expression. Our immunocytofluorescent results supported western blot analysis in primary human astrocyte cells and the OECs co-culture system. The results of this study suggest that the activation of ß2-AR with regard to Cx43 protein levels enhancement in GBM cells and OECs might be a promising approach for GBM treatment in the future.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Neoplasias Encefálicas/metabolismo , Clembuterol/farmacologia , Conexina 43/genética , Glioblastoma/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Conexina 43/metabolismo , Humanos , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/metabolismo , Propanolaminas/farmacologia , Células Tumorais Cultivadas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...