Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 144: 173-181, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367705

RESUMO

The purpose of this research was to investigate the impact of two process configurations integrating two-phase anaerobic digestion (AD) of municipal sludge with thermal hydrolysis (TH). The TH was positioned either before or after the acidogenic fermentation phase. The fermentation process was carried out under the semi-continuous flow regime with a retention time of three days. The TH was done at a temperature of 170 °C and for 30 min. Among all the tested scenarios, the TH of sludge followed by the acidogenic fermentation resulted in the highest COD solubilization ratio (39.5%) and volatile fatty acids production (6,420 ± 400 mg/L), which was 630% and 500% more than that of the raw sludge, respectively. The sequential TH/fermentation process achieved 40% higher ultimate methane yield (240 mL/g COD) than the non-pretreated (raw) sludge. Positioning TH after the fermentation process reduced the ultimate methane yield to 231 240 mL/g COD, although it was still 32% higher than that of the raw sludge. The analysis of methane production rate and biodegradation kinetics data suggested the formation of refractory intermediates during the thermal process of sludge, which reduced the overall performance rate during the first week of the AD process. It was also revealed that acidogenic fermentation of thermally-processed sludge could diminish the adverse effect of the recalcitrant compounds formed during the thermal hydrolysis on the subsequent AD process.


Assuntos
Euryarchaeota , Esgotos , Ácidos , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Hidrólise , Metano
2.
Waste Manag ; 87: 228-236, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109522

RESUMO

In this study, the application of liquid and dewatered digestate was compared for the inoculation of the anaerobic digestion (AD) process. In addition to the specific methanogenic activity and biohydrogen potential tests, biochemical methane potential assay was also conducted using four different types of municipal and industrial waste streams (primary sludge, thickened waste activated sludge, source separated organics, and cattle manure). The specific methanogenic activity of the digestate cake (5.0 ±â€¯0.5 mL-CH4/g-VSS.d) was higher than that of the liquid digestate (3.4 ±â€¯0.2 mL-CH4/g-VSS.d) for the food to microorganism ratio of 0.5. The BMP results also revealed that regardless of the type of the substrate used, the application of the digestate cake as inoculum achieved statistically significantly higher methane production rate compared to the utilization of liquid digestate, most likely due to the lower concentration of dissolved contents (i.e., ammonia, soluble organic matter, heavy metals, etc.) in the diluted digestate cake. Despite the increased process rate, no statistically significant effect of the type of the inoculum was observed on the ultimate methane yield. The biohydrogen potential test revealed the similar performance of the digestate- and digestate cake-inoculated digesters in terms of biohydrogen and volatile fatty acids production. The findings of this study suggest that the digestate cake can be used as an effective alternative to the liquid digestate for the inoculation of full-scale anaerobic digesters, reducing the transportation volume by up to 90%.


Assuntos
Resíduos Sólidos , Eliminação de Resíduos Líquidos , Anaerobiose , Animais , Reatores Biológicos , Bovinos , Metano , Esgotos
3.
Data Brief ; 24: 103913, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31061859

RESUMO

The dataset reported in this article provides quantitative data on anaerobic digestion of cattle manure, source separated organics (SSO), primary sludge (PS), and thickened waste activated sludge (TWAS) using different inoculum sources. The discussion and interpretation of the data are provided in another publication entitled "Comparison of liquid and dewatered digestate as inoculum for anaerobic digestion of organic solid wastes" [1]. The data presented in this article include 1) the gas chromatography (GC) procedure of determining the biogas composition, 2) the procedure of converting the daily biogas/methane production data from the experimental condition (mesophilic temperature of 38 °C and room pressure) to the standard temperature (0 °C) and pressure (1 atm) condition, 3) the specific methanogenic activity data, and 4) the methane daily production rate data, and 5) the organics biodegradation kinetic rates.

4.
Data Brief ; 22: 1018-1026, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30740487

RESUMO

The presented dataset in this data article provides quantitative data on the production of bioenergy (biogas and biomethane) from mesophilic batch anaerobic digestion (AD) of thermally hydrolyzed organic fraction of municipal solid waste (OFMSW). The discussion and interpretation of the data are provided in another publication entitled "Hydrothermal Pretreatment of Source Separated Organics for Enhanced Solubilization and Biomethane Recovery" (Razavi et al., 2019). The data and information presented in the current data article include (1) the ratio of soluble to particulate chemical oxygen demand (COD) under different thermal hydrolysis condition, (2) the daily measured biogas and biomethane data, (3) the cumulative methane yield data in terms of mL CH4 produced per gram of volatile suspended solids (VSS) as well as feedstock added, (4) the ultimate methane yield data as well as the relative improvement in methane recovery compared to the control (non-hydrolyzed) digester, (5) the data of first-order organics biodegradation rate constants, (6) the procedure of measuring biogas composition via gas chromatography, (7) the procedure of converting the biogas/methane volume data acquired under the actual experimental condition (mesophilic temperature of 38 °C and atmospheric pressure) to the standard temperature (0 °C) and pressure (1 atm) condition, and (8) the procedure of determining the first-order kinetic rate constants.

5.
J Environ Manage ; 233: 774-784, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30314871

RESUMO

The rapid depletion of natural resources and the environmental concerns associated with the use of fossil fuels as the main source of global energy is leading to an increased interest in alternative and renewable energy sources. Particular interest has been given to the lignocellulosic biomass as the most abundant source of organic matter with a potential of being utilized for energy recovery. Different approaches have been applied to convert the lignocellulosic biomass to energy products including anaerobic digestion (AD), fermentation, combustion, pyrolysis, and gasification. The AD process has been proven as an effective technology for converting organic material into energy in the form of methane-rich biogas. However, the complex structure of the lignocellulosic biomass comprised of cellulose, hemicelluloses, and lignin hinders the ability of microorganisms in an AD process to degrade and convert these compounds to biogas. Therefore, a pretreatment step is essential to improve the degradability of the lignocellulosic biomass to achieve higher biogas rate and yield. A system that uses pretreatment and AD is known as advanced AD. Several pretreatment methods have been studied over the past few years including physical, thermal, chemical and biological pretreatment. This paper reviews the enzymatic pretreatment as one of the biological pretreatment methods which has received less attention in the literature than the other pretreatment methods. This paper includes a review of lignocellulosic biomass composition, AD process, challenges in degrading lignocellulosic materials, the current status of research to improve the biogas rate and yield from the AD of lignocellulosic biomass via enzymatic pretreatment, and the future trend in research for the reduction of enzymatic pretreatment cost.


Assuntos
Biocombustíveis , Lignina , Biomassa , Metano
6.
Bioresour Technol ; 274: 502-511, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30553962

RESUMO

The objective of this research was to evaluate the effect of the hydrothermal pretreatment on the solubilization of source separated organics (SSO) as well as the biomethane recovery through the mesophilic batch anaerobic digestion process. For this purpose, the SSO was subjected to fifteen different pretreatment conditions within five different severity index (SI) values (3, 3.5, 4, 4.5, and 5). The pretreatment temperature, holding time, and pressure ranged from 150 to 240 °C, 5 to 30 min, and 476 to 3367 kPa, respectively. The highest solubilization improvement of ∼50% was achieved under the pretreatment condition of "220 °C-10 min-2323 kPa" corresponding to the SI value of 4.5. However, the maximum biomethane production yield of 280 mL/g TCODadded and biomethane production rate of 30 mL/g TCODadded were obtained under the less intense pretreatment conditions of "190 °C-20 min-1247 kPa" and "170 °C-30 min-786 kPa", respectively.


Assuntos
Metano/biossíntese , Anaerobiose , Temperatura
7.
Molecules ; 23(8)2018 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30103491

RESUMO

This paper presents results for a comprehensive study that compares the performance of three electricity-based thermal pretreatment methods for improving the effectiveness of anaerobic digestion (AD) to process municipal wastewater sludge. The study compares thermal pretreatment using conventional heating (CH), microwave (MW), and radio frequency (RF) heating techniques. The effectiveness of the pretreatment methods was assessed in terms of chemical oxygen demand (COD) and biopolymers solubilization, AD bioenergy production, input electrical energy, and overall net energy production of the sequential pretreatment/AD process. The heating applicators for the bench-scale testing consisted of a custom-built pressure-sealed heating vessel for CH experiments, an off-the-shelf programmable MW oven operating at a frequency of 2.45 GHz for MW heating experiments, and a newly developed 1 kW RF heating system operating at a frequency of 13.56 MHz for RF heating experiments. Under identical thermal profiles, all three thermal pretreatment methods achieved similar sludge disintegration in terms of COD and biopolymer solubilization as well as AD bioenergy production (p-value > 0.05). According to the energy assessment results, the application of CH and MW pretreatments resulted in overall negative energy production, while positive net energy production was obtained through the sequential pretreatment/AD process utilizing RF pretreatment.


Assuntos
Anaerobiose , Fontes de Energia Bioelétrica , Esgotos , Reatores Biológicos , Calefação , Temperatura
8.
Water Res ; 118: 70-81, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28414962

RESUMO

Microwave (MW) sludge pretreatment systems are usually limited to a frequency of 2.45 GHz and the heating frequency is constrained by commercially available hardware. Studies using MW heating at this frequency have reported negative net energy balance (output energy as methane minus input electrical energy). This necessitates further research into more efficient thermal pretreatment technologies. In this research, a novel and highly efficient radio frequency (RF) pretreatment system at a frequency of 13.56 MHz was designed, implemented, and tested for the first time. The system was custom-designed based on the dielectric characteristics of thickened waste activated sludge (TWAS) to achieve a very efficient and uniform heating system. The effects of three factors including pretreatment method (RF vs. MW), final temperature (60, 90 and 120 °C), and stationary (holding) time (0, 1 and 2 h) on sludge solubilization and performance of mesophilic batch anaerobic digestion were evaluated simultaneously. Energy measurements were also made to compare the efficiency of the custom-designed RF and conventional MW heating systems. The differences in sludge disintegration (solubilization) using the RF and MW pretreatment systems were negligible (P > 0.05). No statistically significant difference was also observed between the two pretreatment systems in terms of mesophilic biogas production rate and extent (P > 0.05). The energy efficiency of the RF pretreatment system was measured between 67.3 and 95.5% for the temperature range of 25-120 °C which was significantly higher than that of the MW system efficiency which varied from 37 to 43%. Overall, the average input energy of the RF system was less than half of the energy consumed during the operation of the MW system to achieve a same target temperature. Considering the results of this research, the RF heating at a frequency of 13.56 MHz is suggested as an effective and energy-efficient technique for thermal hydrolysis of TWAS.


Assuntos
Anaerobiose , Micro-Ondas , Esgotos , Calefação , Metano
9.
Waste Manag ; 53: 182-95, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27160636

RESUMO

This research evaluates whether there is any advantage of selecting one of the thermal methods of sludge pretreatment, conventional heating (CH) and microwave hydrolysis (MW), over another to enhance municipal sludge disintegration and performance of thermophilic anaerobic digestion (AD). For this purpose, a custom-built CH system simulating MW hydrolysis under identical heating and cooling profiles was used. The effects of three main pretreatment parameters including pretreatment method (CH and MW), heating ramp rate (3, 6 and 11°C/min) and final temperature (80, 120 and 160°C) on sludge solubilization and performance of thermophilic batch AD were evaluated. The effects of CH and MW hydrolysis were observed to be similar for sludge disintegration and digester performance (p-value>0.05), while the effects of final temperature and heating ramp rate were proven to be different (p-value<0.05). According to the results, it is essential to apply MW and CH pretreatments under identical experimental condition for an unbiased comparison which supports the findings of the author's earlier study under mesophilic condition. Failing to address this issue explains the significant inconsistency observed among the findings of the previous CH vs. MW comparison studies that were unable to implement identical thermal profiles (between CH and MW) during sludge pretreatment. In comparison with mesophilic AD, thermophilic AD revealed lower biodegradation rate constant at the highest pretreatment temperature tested (160°C), suggesting its higher sensitivity to the inhibitory effects of thermal pretreatment at the elevated temperatures.


Assuntos
Micro-Ondas , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Calefação , Temperatura
10.
J Hazard Mater ; 300: 855-865, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26340553

RESUMO

The objective of this study was to perform a probabilistic risk analysis (PRA) to assess the health risk of Cadmium (Cd), Copper (Cu), and Zinc (Zn) through the consumption of food crops grown on farm lands fertilized by biosolids. The risk analysis was conducted using 8 years of historical heavy metal data (2005-2013) of the municipal biosolids generated by a nearby treatment facility considering one-time and long-term biosolids land application scenarios for a range of 5-100 t/ha fertilizer application rate. The 95th percentile of the hazard index (HI) increased from 0.124 to 0.179 when the rate of fertilizer application increased from 5 to 100 t/ha at one-time biosolids land application. The HI at long-term biosolids land application was also found 1.3 and 1.9 times greater than that of one-time land application at fertilizer application rates of 5 and 100 t/ha, respectively. Rice ingestion had more contribution to the HI than vegetable ingestion. Cd and Cu were also found to have more contribution to the health risk associated to vegetable and rice ingestion, respectively. Results indicated no potential risk to the human health even at long-term biosolids land application scenario at 100 t/ha fertilizer application rate.


Assuntos
Indicadores Básicos de Saúde , Metais Pesados/toxicidade , Plantas Comestíveis/efeitos adversos , Plantas Comestíveis/química , Cádmio/toxicidade , Cobre/toxicidade , Fertilizantes , Humanos , Modelos Estatísticos , Método de Monte Carlo , Oryza/efeitos adversos , Oryza/química , Eliminação de Resíduos , Medição de Risco , Verduras/efeitos adversos , Verduras/química , Zinco/toxicidade
11.
Bioresour Technol ; 187: 235-245, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25863200

RESUMO

This research provides a comprehensive comparison between microwave (MW) and conductive heating (CH) sludge pretreatments under identical heating/cooling profiles at below and above boiling point temperatures. Previous comparison studies were constrained to an uncontrolled or a single heating rate due to lack of a CH equipment simulating MW under identical thermal profiles. In this research, a novel custom-built pressure-sealed vessel which could simulate MW pretreatment under identical heating/cooling profiles was used for CH pretreatment. No statistically significant difference was proven between MW and CH pretreatments in terms of sludge solubilization, anaerobic biogas yield and organics biodegradation rate (p-value>0.05), while statistically significant effects of temperature and heating rate were observed (p-value<0.05). These results explain the contradictory results of previous studies in which only the final temperature (not heating/cooling rates) was controlled.


Assuntos
Calefação/métodos , Micro-Ondas , Esgotos/química , Esgotos/microbiologia , Temperatura de Transição , Gerenciamento de Resíduos/métodos , Governo Local , Doses de Radiação , Esgotos/análise , Condutividade Térmica
12.
Bioresour Technol ; 152: 66-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24280084

RESUMO

The feasibility of anaerobic co-digestion of two juice-based beverage industrial wastes, screen cake (SC) and thickened waste activated sludge (TWAS), along with municipal sludge cake (MC) was investigated. Experiments were conducted in twenty mesophilic batch 160 ml serum bottles with no inhibition occurred. The statistical analysis proved that the substrate type had statistically significant effect on both ultimate biogas and methane yields (P=0.0003<0.05). The maximum and minimum ultimate cumulative methane yields were 890.90 and 308.34 mL/g-VSremoved from the digesters containing only TWAS and SC as substrate. First-order reaction model well described VS utilization in all digesters. The first 2-day and 10-day specific biodegradation rate constants were statistically higher in the digesters containing SC (P=0.004<0.05) and MC (P=0.0005<0.05), respectively. The cost-benefit analysis showed that the capital, operating and total costs can be decreased by 21.5%, 29.8% and 27.6%, respectively using a co-digester rather than two separate digesters.


Assuntos
Técnicas de Cultura Celular por Lotes/economia , Técnicas de Cultura Celular por Lotes/métodos , Bebidas , Frutas/química , Resíduos Industriais , Esgotos/química , Temperatura , Anaerobiose , Biodegradação Ambiental , Biocombustíveis/economia , Biocombustíveis/microbiologia , Reatores Biológicos/economia , Reatores Biológicos/microbiologia , Análise Custo-Benefício , Desenho de Equipamento , Cinética , Metano/análise , Fatores de Tempo , Volatilização
13.
Water Sci Technol ; 67(8): 1816-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23579838

RESUMO

The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.


Assuntos
Compostos Azo/isolamento & purificação , Reatores Biológicos , Naftalenossulfonatos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Compostos Azo/metabolismo , Biodegradação Ambiental , Carvão Vegetal/química , Cromatografia Líquida de Alta Pressão , Corantes/isolamento & purificação , Corantes/metabolismo , Cinética , Microscopia Eletrônica de Varredura , Naftalenossulfonatos/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo
14.
Bioresour Technol ; 127: 415-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23138064

RESUMO

Two integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor (FB-SBBR) were operated to evaluate decolorization and biodegradation of azo dye Acid Red 18 (AR18). Volcanic pumice stones and a type of plastic media made of polyethylene were used as packing media in FB-SBBR1 and FB-SBBR2, respectively. Decolorization of AR18 in both reactors followed first-order kinetic with respect to dye concentration. More than 63.7% and 71.3% of anaerobically formed 1-naphthylamine-4-sulfonate (1N-4S), as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase in FB-SBBR1 and FB-SBBR2, respectively. Based on statistical analysis, performance of FB-SBBR2 in terms of COD removal as well as biodegradation of 1N-4S was significantly higher than that of FB-SBBR1. Spherical and rod shaped bacteria were the dominant species of bacteria in the biofilm grown on the pumice stones surfaces, while, the biofilm grown on surfaces of the polyethylene media had a fluffy structure.


Assuntos
Compostos Azo/metabolismo , Bactérias/metabolismo , Reatores Biológicos , Corantes/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Aerobiose , Anaerobiose , Biodegradação Ambiental , Biofilmes , Análise da Demanda Biológica de Oxigênio , Cinética , Naftalenos , Polietileno , Silicatos , Ácidos Sulfônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...