Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(15): 156402, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37115867

RESUMO

Using semiclassics to surmount the hurdle of bulk-surface inseparability, we derive the superconductor vortex spectrum in nonmagnetic Weyl semimetals and show that it stems from the Berry phase of orbits made of Fermi arcs on opposite surfaces and bulk chiral modes. Tilting the vortex transmutes it between bosonic, fermionic, and supersymmetric, produces periodic peaks in the density of states that signify novel nonlocal Majorana modes, and yields a thickness-independent spectrum at magic "magic angles." We propose (Nb,Ta)P as candidate materials and tunneling spectroscopy as the ideal experiment.

2.
Phys Rev Lett ; 127(18): 187002, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767402

RESUMO

Many clever routes to Majorana fermions have been discovered by exploiting the interplay between superconductivity and band topology in metals and insulators. However, realizations in semimetals remain less explored. We ask, "Under what conditions do superconductor vortices in time-reversal symmetric Weyl semimetals-three-dimensional semimetals with only time-reversal symmetry-trap Majorana fermions on the surface?" If each constant-k_{z} plane, where z is the vortex axis, contains equal numbers of Weyl nodes of each chirality, we predict a generically gapped vortex and derive a topological invariant ν=±1 in terms of the Fermi arc structure that signals the presence or absence of surface Majorana fermions. In contrast, if certain constant-k_{z} planes contain a net chirality of Weyl nodes, the vortex is gapless. We analytically calculate ν within a perturbative scheme and provide numerical support with a lattice model. The criteria survive the presence of other bulk and surface bands and yield phase transitions between trivial, gapless, and topological vortices upon tilting the vortex. We propose Li(Fe_{0.91}Co_{0.09})As and Fe_{1+y}Se_{0.45}Te_{0.55} with broken inversion symmetry as candidates for realizing our proposals.

3.
Phys Rev Lett ; 124(6): 067001, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109094

RESUMO

We study the temperature dependence of the magnetic penetration depth in a 3D topological superconductor (TSC), incorporating the paramagnetic current due to the surface states. A TSC is predicted to host a gapless 2D surface Majorana fluid. In addition to the bulk-dominated London response, we identify a T^{3} power-law-in-temperature contribution from the surface, valid in the low-temperature limit. Our system is fully gapped in the bulk, and should be compared to bulk nodal superconductivity, which also exhibits power-law behavior. Power-law temperature dependence of the penetration depth can be one indicator of topological superconductivity.

4.
J Phys Condens Matter ; 32(25): 255604, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32106103

RESUMO

Invariably, time-reversal symmetry (TRS) violation in a state of matter is identified with static magnetism in it. Here, a directional scalar spin chiral order (DSSCO) phase is introduced that disobeys this basic principle: it breaks TRS but has no density of static moments. It can be obtained by melting the spin moments in a magnetically ordered phase but retaining residual broken TRS. Orbital moments are then precluded by the spatial symmetries of the spin rotation symmetric state. It is allowed in one, two and three dimensions under different conditions of temperature and disorder. Recently, polar Kerr effect experiments in the mysterious pseudogap phase of the underdoped cuprates hinted at a strange form of broken TRS below a temperature T K, that exhibits a hysteretic 'memory effect' above T K and begs reconciliation with nuclear magnetic resonance (which sees no moments), x-ray diffraction (which finds charge ordering tendencies) and the Nernst effect (which detects nematicity). Remarkably, the DSSCO provides a phenomenological route for reconciling all these observations, and it is conceivable that it onsets at the pseudogap temperature ∼T*. A six-spin interaction mediated by enhanced fluctuations of velocity asymmetry between left- and right-movers above the onset of charge ordering in the cuprates is proposed as the driving force behind DSSCO formation. A testable prediction of the existence of the DSSCO in the cuprates is a Kerr signal above T K triggered and trainable by a current driven along one of the in-plane axes, but not by a current along the other.

5.
Phys Rev Lett ; 123(7): 079901, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31491108

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.108.046602.

6.
Sci Rep ; 9(1): 12504, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467309

RESUMO

Interest in topological states of matter burgeoned over a decade ago with the theoretical prediction and experimental detection of topological insulators, especially in bulk three-dimensional insulators that can be tuned out of it by doping. Their superconducting counterpart, the fully-gapped three-dimensional time-reversal-invariant topological superconductors, have evaded discovery in bulk intrinsic superconductors so far. The recently discovered topological metal ß-PdBi2 is a unique candidate for tunable bulk topological superconductivity because of its intrinsic superconductivity and spin-orbit-coupling. In this work, we provide experimental transport signatures consistent with fully-gapped 3D time-reversal-invariant topological superconductivity in K-doped ß-PdBi2. In particular, we find signatures of odd-parity bulk superconductivity via upper-critical field and magnetization measurements- odd-parity pairing can be argued, given the band structure of ß-PdBi2, to result in 3D topological superconductivity. In addition, Andreev spectroscopy reveals surface states protected by time-reversal symmetry which might be possible evidence of Majorana surface states (Majorana cone). Moreover, we find that the undoped bulk system is a trivial superconductor. Thus, we discover ß-PdBi2 as a unique bulk material that, on doping, can potentially undergo an unprecedented topological quantum phase transition in the superconducting state.

7.
Phys Rev E ; 93: 042138, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176285

RESUMO

The eigenstate thermalization hypothesis (ETH) attempts to bridge the gap between quantum mechanical and statistical mechanical descriptions of isolated quantum systems. Here, we define unbiased measures for how well the ETH works in various regimes, by mapping general interacting quantum systems on regular lattices onto a single particle living on a high-dimensional graph. By numerically analyzing deviations from ETH behavior in the nonintegrable Ising model, we propose a quantity that we call the n-weight to democratically characterize the average deviations for all operators residing on a given number of sites, irrespective of their spatial structure. It appears to have a simple scaling form, which we conjecture to hold true for all nonintegrable systems. A closely related quantity, which we term the n-distinguishability, tells us how well two states can be distinguished if only n-site operators are measured. Along the way, we discover that complicated operators on average are worse than simple ones at distinguishing between neighboring eigenstates, contrary to the naive intuition created by the usual statements of the ETH that few-body (many-body) operators acquire the same (different) expectation values in nearby eigenstates at finite energy density. Finally, we sketch heuristic arguments that the ETH originates from the limited ability of simple operators to distinguish between quantum states of a system, especially when the states are subject to constraints such as roughly fixed energy with respect to a local Hamiltonian.

8.
Sci Rep ; 6: 23741, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27033563

RESUMO

We re-examine the question of quantum oscillations from surface Fermi arcs and chiral modes in Weyl semimetals. By introducing two tools--semiclassical phase-space quantization and a numerical implementation of a layered construction of Weyl semimetals--we discover several important generalizations to previous conclusions that were implicitly tailored to the special case of identical Fermi arcs on top and bottom surfaces. We show that the phase-space quantization picture fixes an ambiguity in the previously utilized energy-time quantization approach and correctly reproduces the numerically calculated quantum oscillations for generic Weyl semimetals with distinctly curved Fermi arcs on the two surfaces. Based on these methods, we identify a 'magic' magnetic-field angle where quantum oscillations become independent of sample thickness, with striking experimental implications. We also analyze the stability of these quantum oscillations to disorder, and show that the high-field oscillations are expected to persist in samples whose thickness parametrically exceeds the quantum mean free path.

9.
Phys Rev Lett ; 108(4): 045305, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400856

RESUMO

We realize a two-dimensional kagome lattice for ultracold atoms by overlaying two commensurate triangular optical lattices generated by light at the wavelengths of 532 and 1064 nm. Stabilizing and tuning the relative position of the two lattices, we explore different lattice geometries including a kagome, a one-dimensional stripe, and a decorated triangular lattice. We characterize these geometries using Kapitza-Dirac diffraction and by analyzing the Bloch-state composition of a superfluid released suddenly from the lattice. The Bloch-state analysis also allows us to determine the ground-state distribution within the superlattice unit cell. The lattices implemented in this work offer a near-ideal realization of a paradigmatic model of many-body quantum physics, which can serve as a platform for future studies of geometric frustration.

10.
Phys Rev Lett ; 108(4): 046602, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400871

RESUMO

We study transport in Weyl semimetals with N isotropic Weyl nodes in the presence of Coulomb interactions or disorder at temperature T. In the interacting clean limit, we determine the conductivity σ(ω,T) by solving a quantum Boltzmann equation within a "leading log" approximation and find it to be proportional to T, up to logarithmic factors arising from the flow of couplings. In the noninteracting disordered case, we compute the Kubo conductivity and show that it behaves differently for ω << T and ω >> T: in the former regime we recover a previous result, of a finite dc conductivity and a Drude width vanishing as NT(2); in the latter, we find that σ(ω,T) vanishes linearly with ω with a leading term as T → 0 equal to the clean, free-fermion result: σ(0)((N))(ω,T = 0) = Ne(2)/12h|ω|/v(F). We compare our results to transport data on Y(2)Ir(2)O(7) and comment on the possible relevance to recent experiments on Eu(2)Ir(2)O(7).

11.
Phys Rev Lett ; 107(9): 097001, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21929261

RESUMO

Recent experiments have observed bulk superconductivity in doped topological insulators. Here we ask whether vortex Majorana zero modes, previously predicted to occur when s-wave superconductivity is induced on the surface of topological insulators, survive in these doped systems with metallic normal states. Assuming inversion symmetry, we find that they do but only below a critical doping. The critical doping is tied to a topological phase transition of the vortex line, at which it supports gapless excitations along its length. The critical point depends only on the vortex orientation and a suitably defined SU(2) Berry phase of the normal state Fermi surface. By calculating this phase for available band structures we determine that superconducting p-doped Bi(2)Te(3), among others, supports vortex end Majorana modes. Surprisingly, superconductors derived from topologically trivial band structures can support Majorana modes too.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA